
Design and Pedagogy of
the Introductory Programming Course

Abhiram Ranade
IIT Bombay

October 12, 2018
ACM Compute, Chitkara University, Chandigrah



Educational scenario in India

Many graduates unemployable
Much education is based on rote learning

Memorization rather than thought

A proposal: Intensively reform a few super-important courses

I Create more detailed design document, explain rationale.

I Explain strategies for teaching, assessment, lab work.

I Monitor implementation, student response.

What course to choose?

I Foundational

I Minimum prerequisites

I Considered difficult to teach.

Introductory Programming?



Educational scenario in India

Many graduates unemployable

Much education is based on rote learning
Memorization rather than thought

A proposal: Intensively reform a few super-important courses

I Create more detailed design document, explain rationale.

I Explain strategies for teaching, assessment, lab work.

I Monitor implementation, student response.

What course to choose?

I Foundational

I Minimum prerequisites

I Considered difficult to teach.

Introductory Programming?



Educational scenario in India

Many graduates unemployable
Much education is based on rote learning

Memorization rather than thought

A proposal: Intensively reform a few super-important courses

I Create more detailed design document, explain rationale.

I Explain strategies for teaching, assessment, lab work.

I Monitor implementation, student response.

What course to choose?

I Foundational

I Minimum prerequisites

I Considered difficult to teach.

Introductory Programming?



Educational scenario in India

Many graduates unemployable
Much education is based on rote learning

Memorization rather than thought

A proposal: Intensively reform a few super-important courses

I Create more detailed design document, explain rationale.

I Explain strategies for teaching, assessment, lab work.

I Monitor implementation, student response.

What course to choose?

I Foundational

I Minimum prerequisites

I Considered difficult to teach.

Introductory Programming?



Educational scenario in India

Many graduates unemployable
Much education is based on rote learning

Memorization rather than thought

A proposal: Intensively reform a few super-important courses

I Create more detailed design document, explain rationale.

I Explain strategies for teaching, assessment, lab work.

I Monitor implementation, student response.

What course to choose?

I Foundational

I Minimum prerequisites

I Considered difficult to teach.

Introductory Programming?



Educational scenario in India

Many graduates unemployable
Much education is based on rote learning

Memorization rather than thought

A proposal: Intensively reform a few super-important courses

I Create more detailed design document, explain rationale.

I Explain strategies for teaching, assessment, lab work.

I Monitor implementation, student response.

What course to choose?

I Foundational

I Minimum prerequisites

I Considered difficult to teach.

Introductory Programming?



Educational scenario in India

Many graduates unemployable
Much education is based on rote learning

Memorization rather than thought

A proposal: Intensively reform a few super-important courses

I Create more detailed design document, explain rationale.

I Explain strategies for teaching, assessment, lab work.

I Monitor implementation, student response.

What course to choose?

I Foundational

I Minimum prerequisites

I Considered difficult to teach.

Introductory Programming?



Educational scenario in India

Many graduates unemployable
Much education is based on rote learning

Memorization rather than thought

A proposal: Intensively reform a few super-important courses

I Create more detailed design document, explain rationale.

I Explain strategies for teaching, assessment, lab work.

I Monitor implementation, student response.

What course to choose?

I Foundational

I Minimum prerequisites

I Considered difficult to teach.

Introductory Programming?



Educational scenario in India

Many graduates unemployable
Much education is based on rote learning

Memorization rather than thought

A proposal: Intensively reform a few super-important courses

I Create more detailed design document, explain rationale.

I Explain strategies for teaching, assessment, lab work.

I Monitor implementation, student response.

What course to choose?

I Foundational

I Minimum prerequisites

I Considered difficult to teach.

Introductory Programming?



Educational scenario in India

Many graduates unemployable
Much education is based on rote learning

Memorization rather than thought

A proposal: Intensively reform a few super-important courses

I Create more detailed design document, explain rationale.

I Explain strategies for teaching, assessment, lab work.

I Monitor implementation, student response.

What course to choose?

I Foundational

I Minimum prerequisites

I Considered difficult to teach.

Introductory Programming?



Educational scenario in India

Many graduates unemployable
Much education is based on rote learning

Memorization rather than thought

A proposal: Intensively reform a few super-important courses

I Create more detailed design document, explain rationale.

I Explain strategies for teaching, assessment, lab work.

I Monitor implementation, student response.

What course to choose?

I Foundational

I Minimum prerequisites

I Considered difficult to teach.

Introductory Programming?



Educational scenario in India

Many graduates unemployable
Much education is based on rote learning

Memorization rather than thought

A proposal: Intensively reform a few super-important courses

I Create more detailed design document, explain rationale.

I Explain strategies for teaching, assessment, lab work.

I Monitor implementation, student response.

What course to choose?

I Foundational

I Minimum prerequisites

I Considered difficult to teach.

Introductory Programming?



Educational scenario in India

Many graduates unemployable
Much education is based on rote learning

Memorization rather than thought

A proposal: Intensively reform a few super-important courses

I Create more detailed design document, explain rationale.

I Explain strategies for teaching, assessment, lab work.

I Monitor implementation, student response.

What course to choose?

I Foundational

I Minimum prerequisites

I Considered difficult to teach.

Introductory Programming?



The introductory programming course

I First course in CS curriculum :
I Foundational for all areas of CS.
I Can shape students attitude towards all of CS

I Important also for non CS majors:
I Many find jobs in IT industry
I Engineering and science uses computers heavily

I Is theoretical and practical.

I Touches all aspects of life: science, technology, logistics, fun.

I Psychologically attractive: students feel in-charge!
Empowering and psychologically liberating if done right!



The introductory programming course

I First course in CS curriculum :

I Foundational for all areas of CS.
I Can shape students attitude towards all of CS

I Important also for non CS majors:
I Many find jobs in IT industry
I Engineering and science uses computers heavily

I Is theoretical and practical.

I Touches all aspects of life: science, technology, logistics, fun.

I Psychologically attractive: students feel in-charge!
Empowering and psychologically liberating if done right!



The introductory programming course

I First course in CS curriculum :
I Foundational for all areas of CS.

I Can shape students attitude towards all of CS

I Important also for non CS majors:
I Many find jobs in IT industry
I Engineering and science uses computers heavily

I Is theoretical and practical.

I Touches all aspects of life: science, technology, logistics, fun.

I Psychologically attractive: students feel in-charge!
Empowering and psychologically liberating if done right!



The introductory programming course

I First course in CS curriculum :
I Foundational for all areas of CS.
I Can shape students attitude towards all of CS

I Important also for non CS majors:
I Many find jobs in IT industry
I Engineering and science uses computers heavily

I Is theoretical and practical.

I Touches all aspects of life: science, technology, logistics, fun.

I Psychologically attractive: students feel in-charge!
Empowering and psychologically liberating if done right!



The introductory programming course

I First course in CS curriculum :
I Foundational for all areas of CS.
I Can shape students attitude towards all of CS

I Important also for non CS majors:

I Many find jobs in IT industry
I Engineering and science uses computers heavily

I Is theoretical and practical.

I Touches all aspects of life: science, technology, logistics, fun.

I Psychologically attractive: students feel in-charge!
Empowering and psychologically liberating if done right!



The introductory programming course

I First course in CS curriculum :
I Foundational for all areas of CS.
I Can shape students attitude towards all of CS

I Important also for non CS majors:
I Many find jobs in IT industry

I Engineering and science uses computers heavily

I Is theoretical and practical.

I Touches all aspects of life: science, technology, logistics, fun.

I Psychologically attractive: students feel in-charge!
Empowering and psychologically liberating if done right!



The introductory programming course

I First course in CS curriculum :
I Foundational for all areas of CS.
I Can shape students attitude towards all of CS

I Important also for non CS majors:
I Many find jobs in IT industry
I Engineering and science uses computers heavily

I Is theoretical and practical.

I Touches all aspects of life: science, technology, logistics, fun.

I Psychologically attractive: students feel in-charge!
Empowering and psychologically liberating if done right!



The introductory programming course

I First course in CS curriculum :
I Foundational for all areas of CS.
I Can shape students attitude towards all of CS

I Important also for non CS majors:
I Many find jobs in IT industry
I Engineering and science uses computers heavily

I Is theoretical and practical.

I Touches all aspects of life: science, technology, logistics, fun.

I Psychologically attractive: students feel in-charge!
Empowering and psychologically liberating if done right!



The introductory programming course

I First course in CS curriculum :
I Foundational for all areas of CS.
I Can shape students attitude towards all of CS

I Important also for non CS majors:
I Many find jobs in IT industry
I Engineering and science uses computers heavily

I Is theoretical and practical.

I Touches all aspects of life: science, technology, logistics, fun.

I Psychologically attractive: students feel in-charge!
Empowering and psychologically liberating if done right!



The introductory programming course

I First course in CS curriculum :
I Foundational for all areas of CS.
I Can shape students attitude towards all of CS

I Important also for non CS majors:
I Many find jobs in IT industry
I Engineering and science uses computers heavily

I Is theoretical and practical.

I Touches all aspects of life: science, technology, logistics, fun.

I Psychologically attractive: students feel in-charge!

Empowering and psychologically liberating if done right!



The introductory programming course

I First course in CS curriculum :
I Foundational for all areas of CS.
I Can shape students attitude towards all of CS

I Important also for non CS majors:
I Many find jobs in IT industry
I Engineering and science uses computers heavily

I Is theoretical and practical.

I Touches all aspects of life: science, technology, logistics, fun.

I Psychologically attractive: students feel in-charge!
Empowering and psychologically liberating if done right!



Current status

Considered difficult to teach worldwide.

I Failure rates in intro programming course are about 30%.
Watson-Li 14[WL14], Bennedson-Casperson 07[BC07]

I Students can manually solve very complex problems, but
cannot write programs to solve those. [Win96]

I Programming may be inherently hard. [Guz10]

I Strong reform is needed. [LR16]

Indian scenario:

I Graduates cannot write simple programs. Many surveys



Current status

Considered difficult to teach worldwide.

I Failure rates in intro programming course are about 30%.

Watson-Li 14[WL14], Bennedson-Casperson 07[BC07]

I Students can manually solve very complex problems, but
cannot write programs to solve those. [Win96]

I Programming may be inherently hard. [Guz10]

I Strong reform is needed. [LR16]

Indian scenario:

I Graduates cannot write simple programs. Many surveys



Current status

Considered difficult to teach worldwide.

I Failure rates in intro programming course are about 30%.
Watson-Li 14[WL14], Bennedson-Casperson 07[BC07]

I Students can manually solve very complex problems, but
cannot write programs to solve those. [Win96]

I Programming may be inherently hard. [Guz10]

I Strong reform is needed. [LR16]

Indian scenario:

I Graduates cannot write simple programs. Many surveys



Current status

Considered difficult to teach worldwide.

I Failure rates in intro programming course are about 30%.
Watson-Li 14[WL14], Bennedson-Casperson 07[BC07]

I Students can manually solve very complex problems, but
cannot write programs to solve those.

[Win96]

I Programming may be inherently hard. [Guz10]

I Strong reform is needed. [LR16]

Indian scenario:

I Graduates cannot write simple programs. Many surveys



Current status

Considered difficult to teach worldwide.

I Failure rates in intro programming course are about 30%.
Watson-Li 14[WL14], Bennedson-Casperson 07[BC07]

I Students can manually solve very complex problems, but
cannot write programs to solve those. [Win96]

I Programming may be inherently hard. [Guz10]

I Strong reform is needed. [LR16]

Indian scenario:

I Graduates cannot write simple programs. Many surveys



Current status

Considered difficult to teach worldwide.

I Failure rates in intro programming course are about 30%.
Watson-Li 14[WL14], Bennedson-Casperson 07[BC07]

I Students can manually solve very complex problems, but
cannot write programs to solve those. [Win96]

I Programming may be inherently hard.

[Guz10]

I Strong reform is needed. [LR16]

Indian scenario:

I Graduates cannot write simple programs. Many surveys



Current status

Considered difficult to teach worldwide.

I Failure rates in intro programming course are about 30%.
Watson-Li 14[WL14], Bennedson-Casperson 07[BC07]

I Students can manually solve very complex problems, but
cannot write programs to solve those. [Win96]

I Programming may be inherently hard. [Guz10]

I Strong reform is needed. [LR16]

Indian scenario:

I Graduates cannot write simple programs. Many surveys



Current status

Considered difficult to teach worldwide.

I Failure rates in intro programming course are about 30%.
Watson-Li 14[WL14], Bennedson-Casperson 07[BC07]

I Students can manually solve very complex problems, but
cannot write programs to solve those. [Win96]

I Programming may be inherently hard. [Guz10]

I Strong reform is needed.

[LR16]

Indian scenario:

I Graduates cannot write simple programs. Many surveys



Current status

Considered difficult to teach worldwide.

I Failure rates in intro programming course are about 30%.
Watson-Li 14[WL14], Bennedson-Casperson 07[BC07]

I Students can manually solve very complex problems, but
cannot write programs to solve those. [Win96]

I Programming may be inherently hard. [Guz10]

I Strong reform is needed. [LR16]

Indian scenario:

I Graduates cannot write simple programs. Many surveys



Current status

Considered difficult to teach worldwide.

I Failure rates in intro programming course are about 30%.
Watson-Li 14[WL14], Bennedson-Casperson 07[BC07]

I Students can manually solve very complex problems, but
cannot write programs to solve those. [Win96]

I Programming may be inherently hard. [Guz10]

I Strong reform is needed. [LR16]

Indian scenario:

I Graduates cannot write simple programs. Many surveys



Current status

Considered difficult to teach worldwide.

I Failure rates in intro programming course are about 30%.
Watson-Li 14[WL14], Bennedson-Casperson 07[BC07]

I Students can manually solve very complex problems, but
cannot write programs to solve those. [Win96]

I Programming may be inherently hard. [Guz10]

I Strong reform is needed. [LR16]

Indian scenario:

I Graduates cannot write simple programs.

Many surveys



Current status

Considered difficult to teach worldwide.

I Failure rates in intro programming course are about 30%.
Watson-Li 14[WL14], Bennedson-Casperson 07[BC07]

I Students can manually solve very complex problems, but
cannot write programs to solve those. [Win96]

I Programming may be inherently hard. [Guz10]

I Strong reform is needed. [LR16]

Indian scenario:

I Graduates cannot write simple programs. Many surveys



Outline

I The design of the course
I Conveying the spirit of the course

I Communicating the goals to students
I Communicating the attractive aspects of programming
I Conveying some fundamental ideas early on

I Teaching how to design programs
I A conjecture why programming is found difficult
I Pedagogical implications

I Teaching “difficult” language features

I Experience



Outline

I The design of the course

I Conveying the spirit of the course
I Communicating the goals to students
I Communicating the attractive aspects of programming
I Conveying some fundamental ideas early on

I Teaching how to design programs
I A conjecture why programming is found difficult
I Pedagogical implications

I Teaching “difficult” language features

I Experience



Outline

I The design of the course
I Conveying the spirit of the course

I Communicating the goals to students
I Communicating the attractive aspects of programming
I Conveying some fundamental ideas early on

I Teaching how to design programs
I A conjecture why programming is found difficult
I Pedagogical implications

I Teaching “difficult” language features

I Experience



Outline

I The design of the course
I Conveying the spirit of the course

I Communicating the goals to students

I Communicating the attractive aspects of programming
I Conveying some fundamental ideas early on

I Teaching how to design programs
I A conjecture why programming is found difficult
I Pedagogical implications

I Teaching “difficult” language features

I Experience



Outline

I The design of the course
I Conveying the spirit of the course

I Communicating the goals to students
I Communicating the attractive aspects of programming

I Conveying some fundamental ideas early on

I Teaching how to design programs
I A conjecture why programming is found difficult
I Pedagogical implications

I Teaching “difficult” language features

I Experience



Outline

I The design of the course
I Conveying the spirit of the course

I Communicating the goals to students
I Communicating the attractive aspects of programming
I Conveying some fundamental ideas early on

I Teaching how to design programs
I A conjecture why programming is found difficult
I Pedagogical implications

I Teaching “difficult” language features

I Experience



Outline

I The design of the course
I Conveying the spirit of the course

I Communicating the goals to students
I Communicating the attractive aspects of programming
I Conveying some fundamental ideas early on

I Teaching how to design programs

I A conjecture why programming is found difficult
I Pedagogical implications

I Teaching “difficult” language features

I Experience



Outline

I The design of the course
I Conveying the spirit of the course

I Communicating the goals to students
I Communicating the attractive aspects of programming
I Conveying some fundamental ideas early on

I Teaching how to design programs
I A conjecture why programming is found difficult

I Pedagogical implications

I Teaching “difficult” language features

I Experience



Outline

I The design of the course
I Conveying the spirit of the course

I Communicating the goals to students
I Communicating the attractive aspects of programming
I Conveying some fundamental ideas early on

I Teaching how to design programs
I A conjecture why programming is found difficult
I Pedagogical implications

I Teaching “difficult” language features

I Experience



Outline

I The design of the course
I Conveying the spirit of the course

I Communicating the goals to students
I Communicating the attractive aspects of programming
I Conveying some fundamental ideas early on

I Teaching how to design programs
I A conjecture why programming is found difficult
I Pedagogical implications

I Teaching “difficult” language features

I Experience



Outline

I The design of the course
I Conveying the spirit of the course

I Communicating the goals to students
I Communicating the attractive aspects of programming
I Conveying some fundamental ideas early on

I Teaching how to design programs
I A conjecture why programming is found difficult
I Pedagogical implications

I Teaching “difficult” language features

I Experience



Standard designs of introductory programming

Common style of many course descriptions:

I Dry and cryptic
Like course descriptions of most subjects

I “Learn to write programs to solve simple problems.”
No definition of “simple”. No examples. No details.

I Learn language X.
Usually profuse description.

Inevitable result...

I Students write few programs to solve unseen problems.

I Most course time is spent on language learning.



Standard designs of introductory programming

Common style of many course descriptions:

I Dry and cryptic
Like course descriptions of most subjects

I “Learn to write programs to solve simple problems.”
No definition of “simple”. No examples. No details.

I Learn language X.
Usually profuse description.

Inevitable result...

I Students write few programs to solve unseen problems.

I Most course time is spent on language learning.



Standard designs of introductory programming

Common style of many course descriptions:

I Dry and cryptic

Like course descriptions of most subjects

I “Learn to write programs to solve simple problems.”
No definition of “simple”. No examples. No details.

I Learn language X.
Usually profuse description.

Inevitable result...

I Students write few programs to solve unseen problems.

I Most course time is spent on language learning.



Standard designs of introductory programming

Common style of many course descriptions:

I Dry and cryptic
Like course descriptions of most subjects

I “Learn to write programs to solve simple problems.”
No definition of “simple”. No examples. No details.

I Learn language X.
Usually profuse description.

Inevitable result...

I Students write few programs to solve unseen problems.

I Most course time is spent on language learning.



Standard designs of introductory programming

Common style of many course descriptions:

I Dry and cryptic
Like course descriptions of most subjects

I “Learn to write programs to solve simple problems.”

No definition of “simple”. No examples. No details.

I Learn language X.
Usually profuse description.

Inevitable result...

I Students write few programs to solve unseen problems.

I Most course time is spent on language learning.



Standard designs of introductory programming

Common style of many course descriptions:

I Dry and cryptic
Like course descriptions of most subjects

I “Learn to write programs to solve simple problems.”
No definition of “simple”. No examples. No details.

I Learn language X.
Usually profuse description.

Inevitable result...

I Students write few programs to solve unseen problems.

I Most course time is spent on language learning.



Standard designs of introductory programming

Common style of many course descriptions:

I Dry and cryptic
Like course descriptions of most subjects

I “Learn to write programs to solve simple problems.”
No definition of “simple”. No examples. No details.

I Learn language X.

Usually profuse description.

Inevitable result...

I Students write few programs to solve unseen problems.

I Most course time is spent on language learning.



Standard designs of introductory programming

Common style of many course descriptions:

I Dry and cryptic
Like course descriptions of most subjects

I “Learn to write programs to solve simple problems.”
No definition of “simple”. No examples. No details.

I Learn language X.
Usually profuse description.

Inevitable result...

I Students write few programs to solve unseen problems.

I Most course time is spent on language learning.



Standard designs of introductory programming

Common style of many course descriptions:

I Dry and cryptic
Like course descriptions of most subjects

I “Learn to write programs to solve simple problems.”
No definition of “simple”. No examples. No details.

I Learn language X.
Usually profuse description.

Inevitable result...

I Students write few programs to solve unseen problems.

I Most course time is spent on language learning.



Standard designs of introductory programming

Common style of many course descriptions:

I Dry and cryptic
Like course descriptions of most subjects

I “Learn to write programs to solve simple problems.”
No definition of “simple”. No examples. No details.

I Learn language X.
Usually profuse description.

Inevitable result...

I Students write few programs to solve unseen problems.

I Most course time is spent on language learning.



Standard designs of introductory programming

Common style of many course descriptions:

I Dry and cryptic
Like course descriptions of most subjects

I “Learn to write programs to solve simple problems.”
No definition of “simple”. No examples. No details.

I Learn language X.
Usually profuse description.

Inevitable result...

I Students write few programs to solve unseen problems.

I Most course time is spent on language learning.



What should a design document contain?

I High level course goal
What student will be able to do after the course.

What makes the effort worthwhile.
State in the language of laymen if possible.

I Detailed learning objectives

State minimum accomplishments expected.

Allow individual universities to decide how many hours/courses,
but not fall below minimum.

Define terms, do not say “solve simple problems”.

Give examples.

Discuss evaluation and pedagogy strategies.



What should a design document contain?

I High level course goal

What student will be able to do after the course.
What makes the effort worthwhile.

State in the language of laymen if possible.

I Detailed learning objectives

State minimum accomplishments expected.

Allow individual universities to decide how many hours/courses,
but not fall below minimum.

Define terms, do not say “solve simple problems”.

Give examples.

Discuss evaluation and pedagogy strategies.



What should a design document contain?

I High level course goal
What student will be able to do after the course.

What makes the effort worthwhile.
State in the language of laymen if possible.

I Detailed learning objectives

State minimum accomplishments expected.

Allow individual universities to decide how many hours/courses,
but not fall below minimum.

Define terms, do not say “solve simple problems”.

Give examples.

Discuss evaluation and pedagogy strategies.



What should a design document contain?

I High level course goal
What student will be able to do after the course.

What makes the effort worthwhile.

State in the language of laymen if possible.

I Detailed learning objectives

State minimum accomplishments expected.

Allow individual universities to decide how many hours/courses,
but not fall below minimum.

Define terms, do not say “solve simple problems”.

Give examples.

Discuss evaluation and pedagogy strategies.



What should a design document contain?

I High level course goal
What student will be able to do after the course.

What makes the effort worthwhile.
State in the language of laymen if possible.

I Detailed learning objectives

State minimum accomplishments expected.

Allow individual universities to decide how many hours/courses,
but not fall below minimum.

Define terms, do not say “solve simple problems”.

Give examples.

Discuss evaluation and pedagogy strategies.



What should a design document contain?

I High level course goal
What student will be able to do after the course.

What makes the effort worthwhile.
State in the language of laymen if possible.

I Detailed learning objectives

State minimum accomplishments expected.

Allow individual universities to decide how many hours/courses,
but not fall below minimum.

Define terms, do not say “solve simple problems”.

Give examples.

Discuss evaluation and pedagogy strategies.



What should a design document contain?

I High level course goal
What student will be able to do after the course.

What makes the effort worthwhile.
State in the language of laymen if possible.

I Detailed learning objectives

State minimum accomplishments expected.

Allow individual universities to decide how many hours/courses,
but not fall below minimum.

Define terms, do not say “solve simple problems”.

Give examples.

Discuss evaluation and pedagogy strategies.



What should a design document contain?

I High level course goal
What student will be able to do after the course.

What makes the effort worthwhile.
State in the language of laymen if possible.

I Detailed learning objectives

State minimum accomplishments expected.

Allow individual universities to decide how many hours/courses,
but not fall below minimum.

Define terms, do not say “solve simple problems”.

Give examples.

Discuss evaluation and pedagogy strategies.



What should a design document contain?

I High level course goal
What student will be able to do after the course.

What makes the effort worthwhile.
State in the language of laymen if possible.

I Detailed learning objectives

State minimum accomplishments expected.

Allow individual universities to decide how many hours/courses,
but not fall below minimum.

Define terms, do not say “solve simple problems”.

Give examples.

Discuss evaluation and pedagogy strategies.



What should a design document contain?

I High level course goal
What student will be able to do after the course.

What makes the effort worthwhile.
State in the language of laymen if possible.

I Detailed learning objectives

State minimum accomplishments expected.

Allow individual universities to decide how many hours/courses,
but not fall below minimum.

Define terms, do not say “solve simple problems”.

Give examples.

Discuss evaluation and pedagogy strategies.



What should a design document contain?

I High level course goal
What student will be able to do after the course.

What makes the effort worthwhile.
State in the language of laymen if possible.

I Detailed learning objectives

State minimum accomplishments expected.

Allow individual universities to decide how many hours/courses,
but not fall below minimum.

Define terms, do not say “solve simple problems”.

Give examples.

Discuss evaluation and pedagogy strategies.



Course design sketch: Main course goal

Write programs to perform all calculations you can do manually.

Lots of practice with short programs: Arithmetic on numbers,
matrices, polynomials, searching, root finding, ...

Medium sized (150 lines) programs: that model a system with
state + evolution rules + user interaction.

I Simulation of mechanical systems, orbiting planets, circuits.

I Simulation of computer execution, train systems.

I Games.

I Library management, bank account management.

Clearly indicate depth of learning expected.

Efficiency issues: At least as efficient as manual computation.

Correctness issues: Correctly mimic manual algorithm.



Course design sketch: Main course goal

Write programs to perform all calculations you can do manually.

Lots of practice with short programs: Arithmetic on numbers,
matrices, polynomials, searching, root finding, ...

Medium sized (150 lines) programs: that model a system with
state + evolution rules + user interaction.

I Simulation of mechanical systems, orbiting planets, circuits.

I Simulation of computer execution, train systems.

I Games.

I Library management, bank account management.

Clearly indicate depth of learning expected.

Efficiency issues: At least as efficient as manual computation.

Correctness issues: Correctly mimic manual algorithm.



Course design sketch: Main course goal

Write programs to perform all calculations you can do manually.

Lots of practice with short programs: Arithmetic on numbers,
matrices, polynomials, searching, root finding, ...

Medium sized (150 lines) programs: that model a system with
state + evolution rules + user interaction.

I Simulation of mechanical systems, orbiting planets, circuits.

I Simulation of computer execution, train systems.

I Games.

I Library management, bank account management.

Clearly indicate depth of learning expected.

Efficiency issues: At least as efficient as manual computation.

Correctness issues: Correctly mimic manual algorithm.



Course design sketch: Main course goal

Write programs to perform all calculations you can do manually.

Lots of practice with short programs: Arithmetic on numbers,
matrices, polynomials, searching, root finding, ...

Medium sized (150 lines) programs: that model a system with
state + evolution rules + user interaction.

I Simulation of mechanical systems, orbiting planets, circuits.

I Simulation of computer execution, train systems.

I Games.

I Library management, bank account management.

Clearly indicate depth of learning expected.

Efficiency issues: At least as efficient as manual computation.

Correctness issues: Correctly mimic manual algorithm.



Course design sketch: Main course goal

Write programs to perform all calculations you can do manually.

Lots of practice with short programs: Arithmetic on numbers,
matrices, polynomials, searching, root finding, ...

Medium sized (150 lines) programs: that model a system with
state + evolution rules + user interaction.

I Simulation of mechanical systems, orbiting planets, circuits.

I Simulation of computer execution, train systems.

I Games.

I Library management, bank account management.

Clearly indicate depth of learning expected.

Efficiency issues: At least as efficient as manual computation.

Correctness issues: Correctly mimic manual algorithm.



Course design sketch: Main course goal

Write programs to perform all calculations you can do manually.

Lots of practice with short programs: Arithmetic on numbers,
matrices, polynomials, searching, root finding, ...

Medium sized (150 lines) programs: that model a system with
state + evolution rules + user interaction.

I Simulation of mechanical systems, orbiting planets, circuits.

I Simulation of computer execution, train systems.

I Games.

I Library management, bank account management.

Clearly indicate depth of learning expected.

Efficiency issues: At least as efficient as manual computation.

Correctness issues: Correctly mimic manual algorithm.



Course design sketch: Main course goal

Write programs to perform all calculations you can do manually.

Lots of practice with short programs: Arithmetic on numbers,
matrices, polynomials, searching, root finding, ...

Medium sized (150 lines) programs: that model a system with
state + evolution rules + user interaction.

I Simulation of mechanical systems, orbiting planets, circuits.

I Simulation of computer execution, train systems.

I Games.

I Library management, bank account management.

Clearly indicate depth of learning expected.

Efficiency issues: At least as efficient as manual computation.

Correctness issues: Correctly mimic manual algorithm.



Course design sketch: Main course goal

Write programs to perform all calculations you can do manually.

Lots of practice with short programs: Arithmetic on numbers,
matrices, polynomials, searching, root finding, ...

Medium sized (150 lines) programs: that model a system with
state + evolution rules + user interaction.

I Simulation of mechanical systems, orbiting planets, circuits.

I Simulation of computer execution, train systems.

I Games.

I Library management, bank account management.

Clearly indicate depth of learning expected.

Efficiency issues: At least as efficient as manual computation.

Correctness issues: Correctly mimic manual algorithm.



Course design sketch: Main course goal

Write programs to perform all calculations you can do manually.

Lots of practice with short programs: Arithmetic on numbers,
matrices, polynomials, searching, root finding, ...

Medium sized (150 lines) programs: that model a system with
state + evolution rules + user interaction.

I Simulation of mechanical systems, orbiting planets, circuits.

I Simulation of computer execution, train systems.

I Games.

I Library management, bank account management.

Clearly indicate depth of learning expected.

Efficiency issues: At least as efficient as manual computation.

Correctness issues: Correctly mimic manual algorithm.



Course design sketch: Main course goal

Write programs to perform all calculations you can do manually.

Lots of practice with short programs: Arithmetic on numbers,
matrices, polynomials, searching, root finding, ...

Medium sized (150 lines) programs: that model a system with
state + evolution rules + user interaction.

I Simulation of mechanical systems, orbiting planets, circuits.

I Simulation of computer execution, train systems.

I Games.

I Library management, bank account management.

Clearly indicate depth of learning expected.

Efficiency issues: At least as efficient as manual computation.

Correctness issues: Correctly mimic manual algorithm.



Course design sketch: Main course goal

Write programs to perform all calculations you can do manually.

Lots of practice with short programs: Arithmetic on numbers,
matrices, polynomials, searching, root finding, ...

Medium sized (150 lines) programs: that model a system with
state + evolution rules + user interaction.

I Simulation of mechanical systems, orbiting planets, circuits.

I Simulation of computer execution, train systems.

I Games.

I Library management, bank account management.

Clearly indicate depth of learning expected.

Efficiency issues: At least as efficient as manual computation.

Correctness issues: Correctly mimic manual algorithm.



Course design sketch: Learning objectives:

How a computer works:

I Binary representation for numbers

I Representation of text, images, ... using numbers

I Block diagram of CPU

I Memory and addresses

Programming language syntax and semantics

I Data types, variables, assignment

I Conditional execution, Iteration

I Functions and recursion

I Arrays and classes

Running time analysis: Understand time taken by nested loops.



Course design sketch: Learning objectives:

How a computer works:

I Binary representation for numbers

I Representation of text, images, ... using numbers

I Block diagram of CPU

I Memory and addresses

Programming language syntax and semantics

I Data types, variables, assignment

I Conditional execution, Iteration

I Functions and recursion

I Arrays and classes

Running time analysis: Understand time taken by nested loops.



Course design sketch: Learning objectives:

How a computer works:

I Binary representation for numbers

I Representation of text, images, ... using numbers

I Block diagram of CPU

I Memory and addresses

Programming language syntax and semantics

I Data types, variables, assignment

I Conditional execution, Iteration

I Functions and recursion

I Arrays and classes

Running time analysis: Understand time taken by nested loops.



Course design sketch: Learning objectives:

How a computer works:

I Binary representation for numbers

I Representation of text, images, ... using numbers

I Block diagram of CPU

I Memory and addresses

Programming language syntax and semantics

I Data types, variables, assignment

I Conditional execution, Iteration

I Functions and recursion

I Arrays and classes

Running time analysis: Understand time taken by nested loops.



Course design sketch: Learning objectives:

How a computer works:

I Binary representation for numbers

I Representation of text, images, ... using numbers

I Block diagram of CPU

I Memory and addresses

Programming language syntax and semantics

I Data types, variables, assignment

I Conditional execution, Iteration

I Functions and recursion

I Arrays and classes

Running time analysis: Understand time taken by nested loops.



Course design sketch: Learning objectives:

How a computer works:

I Binary representation for numbers

I Representation of text, images, ... using numbers

I Block diagram of CPU

I Memory and addresses

Programming language syntax and semantics

I Data types, variables, assignment

I Conditional execution, Iteration

I Functions and recursion

I Arrays and classes

Running time analysis: Understand time taken by nested loops.



Course design sketch: Learning objectives:

How a computer works:

I Binary representation for numbers

I Representation of text, images, ... using numbers

I Block diagram of CPU

I Memory and addresses

Programming language syntax and semantics

I Data types, variables, assignment

I Conditional execution, Iteration

I Functions and recursion

I Arrays and classes

Running time analysis: Understand time taken by nested loops.



Course design sketch: Learning objectives:

How a computer works:

I Binary representation for numbers

I Representation of text, images, ... using numbers

I Block diagram of CPU

I Memory and addresses

Programming language syntax and semantics

I Data types, variables, assignment

I Conditional execution, Iteration

I Functions and recursion

I Arrays and classes

Running time analysis: Understand time taken by nested loops.



Course design sketch: Learning objectives:

How a computer works:

I Binary representation for numbers

I Representation of text, images, ... using numbers

I Block diagram of CPU

I Memory and addresses

Programming language syntax and semantics

I Data types, variables, assignment

I Conditional execution, Iteration

I Functions and recursion

I Arrays and classes

Running time analysis: Understand time taken by nested loops.



Course design sketch: Learning objectives:

How a computer works:

I Binary representation for numbers

I Representation of text, images, ... using numbers

I Block diagram of CPU

I Memory and addresses

Programming language syntax and semantics

I Data types, variables, assignment

I Conditional execution, Iteration

I Functions and recursion

I Arrays and classes

Running time analysis: Understand time taken by nested loops.



Course design sketch: Learning objectives:

How a computer works:

I Binary representation for numbers

I Representation of text, images, ... using numbers

I Block diagram of CPU

I Memory and addresses

Programming language syntax and semantics

I Data types, variables, assignment

I Conditional execution, Iteration

I Functions and recursion

I Arrays and classes

Running time analysis: Understand time taken by nested loops.



Course design sketch: Learning objectives:

How a computer works:

I Binary representation for numbers

I Representation of text, images, ... using numbers

I Block diagram of CPU

I Memory and addresses

Programming language syntax and semantics

I Data types, variables, assignment

I Conditional execution, Iteration

I Functions and recursion

I Arrays and classes

Running time analysis: Understand time taken by nested loops.



Learning objectives (contd.)

Algorithm/Program Design:

I Design an algorithm for solving the problem manually.
Using techniques learned prior to programming.

I Understand the structure of the manual algorithm.

I Translate manual algorithm to computer program.

I Efficiency: as much as natural manual computation.

Program correctness:

I Does your program do what you would do manually?

I Loop invariants

Software engineering:
How to breakup code into functions, classes..

Standard Library



Learning objectives (contd.)

Algorithm/Program Design:

I Design an algorithm for solving the problem manually.
Using techniques learned prior to programming.

I Understand the structure of the manual algorithm.

I Translate manual algorithm to computer program.

I Efficiency: as much as natural manual computation.

Program correctness:

I Does your program do what you would do manually?

I Loop invariants

Software engineering:
How to breakup code into functions, classes..

Standard Library



Learning objectives (contd.)

Algorithm/Program Design:

I Design an algorithm for solving the problem manually.

Using techniques learned prior to programming.

I Understand the structure of the manual algorithm.

I Translate manual algorithm to computer program.

I Efficiency: as much as natural manual computation.

Program correctness:

I Does your program do what you would do manually?

I Loop invariants

Software engineering:
How to breakup code into functions, classes..

Standard Library



Learning objectives (contd.)

Algorithm/Program Design:

I Design an algorithm for solving the problem manually.
Using techniques learned prior to programming.

I Understand the structure of the manual algorithm.

I Translate manual algorithm to computer program.

I Efficiency: as much as natural manual computation.

Program correctness:

I Does your program do what you would do manually?

I Loop invariants

Software engineering:
How to breakup code into functions, classes..

Standard Library



Learning objectives (contd.)

Algorithm/Program Design:

I Design an algorithm for solving the problem manually.
Using techniques learned prior to programming.

I Understand the structure of the manual algorithm.

I Translate manual algorithm to computer program.

I Efficiency: as much as natural manual computation.

Program correctness:

I Does your program do what you would do manually?

I Loop invariants

Software engineering:
How to breakup code into functions, classes..

Standard Library



Learning objectives (contd.)

Algorithm/Program Design:

I Design an algorithm for solving the problem manually.
Using techniques learned prior to programming.

I Understand the structure of the manual algorithm.

I Translate manual algorithm to computer program.

I Efficiency: as much as natural manual computation.

Program correctness:

I Does your program do what you would do manually?

I Loop invariants

Software engineering:
How to breakup code into functions, classes..

Standard Library



Learning objectives (contd.)

Algorithm/Program Design:

I Design an algorithm for solving the problem manually.
Using techniques learned prior to programming.

I Understand the structure of the manual algorithm.

I Translate manual algorithm to computer program.

I Efficiency: as much as natural manual computation.

Program correctness:

I Does your program do what you would do manually?

I Loop invariants

Software engineering:
How to breakup code into functions, classes..

Standard Library



Learning objectives (contd.)

Algorithm/Program Design:

I Design an algorithm for solving the problem manually.
Using techniques learned prior to programming.

I Understand the structure of the manual algorithm.

I Translate manual algorithm to computer program.

I Efficiency: as much as natural manual computation.

Program correctness:

I Does your program do what you would do manually?

I Loop invariants

Software engineering:
How to breakup code into functions, classes..

Standard Library



Learning objectives (contd.)

Algorithm/Program Design:

I Design an algorithm for solving the problem manually.
Using techniques learned prior to programming.

I Understand the structure of the manual algorithm.

I Translate manual algorithm to computer program.

I Efficiency: as much as natural manual computation.

Program correctness:

I Does your program do what you would do manually?

I Loop invariants

Software engineering:
How to breakup code into functions, classes..

Standard Library



Learning objectives (contd.)

Algorithm/Program Design:

I Design an algorithm for solving the problem manually.
Using techniques learned prior to programming.

I Understand the structure of the manual algorithm.

I Translate manual algorithm to computer program.

I Efficiency: as much as natural manual computation.

Program correctness:

I Does your program do what you would do manually?

I Loop invariants

Software engineering:
How to breakup code into functions, classes..

Standard Library



Learning objectives (contd.)

Algorithm/Program Design:

I Design an algorithm for solving the problem manually.
Using techniques learned prior to programming.

I Understand the structure of the manual algorithm.

I Translate manual algorithm to computer program.

I Efficiency: as much as natural manual computation.

Program correctness:

I Does your program do what you would do manually?

I Loop invariants

Software engineering:

How to breakup code into functions, classes..

Standard Library



Learning objectives (contd.)

Algorithm/Program Design:

I Design an algorithm for solving the problem manually.
Using techniques learned prior to programming.

I Understand the structure of the manual algorithm.

I Translate manual algorithm to computer program.

I Efficiency: as much as natural manual computation.

Program correctness:

I Does your program do what you would do manually?

I Loop invariants

Software engineering:
How to breakup code into functions, classes..

Standard Library



Learning objectives (contd.)

Algorithm/Program Design:

I Design an algorithm for solving the problem manually.
Using techniques learned prior to programming.

I Understand the structure of the manual algorithm.

I Translate manual algorithm to computer program.

I Efficiency: as much as natural manual computation.

Program correctness:

I Does your program do what you would do manually?

I Loop invariants

Software engineering:
How to breakup code into functions, classes..

Standard Library



Course design sketch: Additional advice

I How to motivate students

I How to convey the spirit of the course on day 1

I Which topics are difficult and how to teach them

I Strategies for setting exams

Suggestive rather than mandatory

Many instructors will appreciate guidance.



Course design sketch: Additional advice

I How to motivate students

I How to convey the spirit of the course on day 1

I Which topics are difficult and how to teach them

I Strategies for setting exams

Suggestive rather than mandatory

Many instructors will appreciate guidance.



Course design sketch: Additional advice

I How to motivate students

I How to convey the spirit of the course on day 1

I Which topics are difficult and how to teach them

I Strategies for setting exams

Suggestive rather than mandatory

Many instructors will appreciate guidance.



Course design sketch: Additional advice

I How to motivate students

I How to convey the spirit of the course on day 1

I Which topics are difficult and how to teach them

I Strategies for setting exams

Suggestive rather than mandatory

Many instructors will appreciate guidance.



Course design sketch: Additional advice

I How to motivate students

I How to convey the spirit of the course on day 1

I Which topics are difficult and how to teach them

I Strategies for setting exams

Suggestive rather than mandatory

Many instructors will appreciate guidance.



Course design sketch: Additional advice

I How to motivate students

I How to convey the spirit of the course on day 1

I Which topics are difficult and how to teach them

I Strategies for setting exams

Suggestive rather than mandatory

Many instructors will appreciate guidance.



Course design sketch: Additional advice

I How to motivate students

I How to convey the spirit of the course on day 1

I Which topics are difficult and how to teach them

I Strategies for setting exams

Suggestive rather than mandatory

Many instructors will appreciate guidance.



Conveying the spirit of the course



What is the spirit of introductory programming?

I Programming is a powerful tool.

I Programming contains intellectual challenge.

I Programming touches all aspects of life.

Should convey this early on..
To get better student motivation.

“Convey” 6= “State”
Demos and examples have more impact.



What is the spirit of introductory programming?

I Programming is a powerful tool.

I Programming contains intellectual challenge.

I Programming touches all aspects of life.

Should convey this early on..
To get better student motivation.

“Convey” 6= “State”
Demos and examples have more impact.



What is the spirit of introductory programming?

I Programming is a powerful tool.

I Programming contains intellectual challenge.

I Programming touches all aspects of life.

Should convey this early on..
To get better student motivation.

“Convey” 6= “State”
Demos and examples have more impact.



What is the spirit of introductory programming?

I Programming is a powerful tool.

I Programming contains intellectual challenge.

I Programming touches all aspects of life.

Should convey this early on..
To get better student motivation.

“Convey” 6= “State”
Demos and examples have more impact.



What is the spirit of introductory programming?

I Programming is a powerful tool.

I Programming contains intellectual challenge.

I Programming touches all aspects of life.

Should convey this early on..

To get better student motivation.
“Convey” 6= “State”

Demos and examples have more impact.



What is the spirit of introductory programming?

I Programming is a powerful tool.

I Programming contains intellectual challenge.

I Programming touches all aspects of life.

Should convey this early on..
To get better student motivation.

“Convey” 6= “State”
Demos and examples have more impact.



What is the spirit of introductory programming?

I Programming is a powerful tool.

I Programming contains intellectual challenge.

I Programming touches all aspects of life.

Should convey this early on..
To get better student motivation.

“Convey” 6= “State”

Demos and examples have more impact.



What is the spirit of introductory programming?

I Programming is a powerful tool.

I Programming contains intellectual challenge.

I Programming touches all aspects of life.

Should convey this early on..
To get better student motivation.

“Convey” 6= “State”
Demos and examples have more impact.



A teaching tool: Simplecpp

www.cse.iitb.ac.in/~ranade/simplecpp

I Turtle graphics

I Coordinate based 2D graphics

I Graphical input, Elementary animation

I Very easy to use; “alternative to <iostream>”

I Appropriate for the era of touch screens and cell phones

I Useful for illustrating recursion, classes, ...

I “New statement”: repeat



A teaching tool: Simplecpp

www.cse.iitb.ac.in/~ranade/simplecpp

I Turtle graphics

I Coordinate based 2D graphics

I Graphical input, Elementary animation

I Very easy to use; “alternative to <iostream>”

I Appropriate for the era of touch screens and cell phones

I Useful for illustrating recursion, classes, ...

I “New statement”: repeat



A teaching tool: Simplecpp

www.cse.iitb.ac.in/~ranade/simplecpp

I Turtle graphics

I Coordinate based 2D graphics

I Graphical input, Elementary animation

I Very easy to use; “alternative to <iostream>”

I Appropriate for the era of touch screens and cell phones

I Useful for illustrating recursion, classes, ...

I “New statement”: repeat



A teaching tool: Simplecpp

www.cse.iitb.ac.in/~ranade/simplecpp

I Turtle graphics

I Coordinate based 2D graphics

I Graphical input, Elementary animation

I Very easy to use; “alternative to <iostream>”

I Appropriate for the era of touch screens and cell phones

I Useful for illustrating recursion, classes, ...

I “New statement”: repeat



A teaching tool: Simplecpp

www.cse.iitb.ac.in/~ranade/simplecpp

I Turtle graphics

I Coordinate based 2D graphics

I Graphical input, Elementary animation

I Very easy to use; “alternative to <iostream>”

I Appropriate for the era of touch screens and cell phones

I Useful for illustrating recursion, classes, ...

I “New statement”: repeat



A teaching tool: Simplecpp

www.cse.iitb.ac.in/~ranade/simplecpp

I Turtle graphics

I Coordinate based 2D graphics

I Graphical input, Elementary animation

I Very easy to use; “alternative to <iostream>”

I Appropriate for the era of touch screens and cell phones

I Useful for illustrating recursion, classes, ...

I “New statement”: repeat



A teaching tool: Simplecpp

www.cse.iitb.ac.in/~ranade/simplecpp

I Turtle graphics

I Coordinate based 2D graphics

I Graphical input, Elementary animation

I Very easy to use; “alternative to <iostream>”

I Appropriate for the era of touch screens and cell phones

I Useful for illustrating recursion, classes, ...

I “New statement”: repeat



A teaching tool: Simplecpp

www.cse.iitb.ac.in/~ranade/simplecpp

I Turtle graphics

I Coordinate based 2D graphics

I Graphical input, Elementary animation

I Very easy to use; “alternative to <iostream>”

I Appropriate for the era of touch screens and cell phones

I Useful for illustrating recursion, classes, ...

I “New statement”: repeat



A teaching tool: Simplecpp

www.cse.iitb.ac.in/~ranade/simplecpp

I Turtle graphics

I Coordinate based 2D graphics

I Graphical input, Elementary animation

I Very easy to use; “alternative to <iostream>”

I Appropriate for the era of touch screens and cell phones

I Useful for illustrating recursion, classes, ...

I “New statement”: repeat



Getting to the essence of programming on day 1

First impressions are very important

I Convey the spirit, beauty, power of your material

I Students are fresh and more alert on day 1

Introduce programming using “Turtle Graphics”:

I Invented in 1960s by Seymour Pappert, as part of the Logo
programming language for teaching programming to children.

I Turtle:
I A symbolic animal that lives on the screen.
I Moves as per commands issued by the program.
I Has a pen, which draws on the screen as the turtle moves.

I Goal of turtle graphics: Draw interesting pictures on the
screen.



Getting to the essence of programming on day 1

First impressions are very important

I Convey the spirit, beauty, power of your material

I Students are fresh and more alert on day 1

Introduce programming using “Turtle Graphics”:

I Invented in 1960s by Seymour Pappert, as part of the Logo
programming language for teaching programming to children.

I Turtle:
I A symbolic animal that lives on the screen.
I Moves as per commands issued by the program.
I Has a pen, which draws on the screen as the turtle moves.

I Goal of turtle graphics: Draw interesting pictures on the
screen.



Getting to the essence of programming on day 1

First impressions are very important

I Convey the spirit, beauty, power of your material

I Students are fresh and more alert on day 1

Introduce programming using “Turtle Graphics”:

I Invented in 1960s by Seymour Pappert, as part of the Logo
programming language for teaching programming to children.

I Turtle:
I A symbolic animal that lives on the screen.
I Moves as per commands issued by the program.
I Has a pen, which draws on the screen as the turtle moves.

I Goal of turtle graphics: Draw interesting pictures on the
screen.



Getting to the essence of programming on day 1

First impressions are very important

I Convey the spirit, beauty, power of your material

I Students are fresh and more alert on day 1

Introduce programming using “Turtle Graphics”:

I Invented in 1960s by Seymour Pappert, as part of the Logo
programming language for teaching programming to children.

I Turtle:
I A symbolic animal that lives on the screen.
I Moves as per commands issued by the program.
I Has a pen, which draws on the screen as the turtle moves.

I Goal of turtle graphics: Draw interesting pictures on the
screen.



Getting to the essence of programming on day 1

First impressions are very important

I Convey the spirit, beauty, power of your material

I Students are fresh and more alert on day 1

Introduce programming using “Turtle Graphics”:

I Invented in 1960s by Seymour Pappert, as part of the Logo
programming language for teaching programming to children.

I Turtle:
I A symbolic animal that lives on the screen.
I Moves as per commands issued by the program.
I Has a pen, which draws on the screen as the turtle moves.

I Goal of turtle graphics: Draw interesting pictures on the
screen.



Getting to the essence of programming on day 1

First impressions are very important

I Convey the spirit, beauty, power of your material

I Students are fresh and more alert on day 1

Introduce programming using “Turtle Graphics”:

I Invented in 1960s by Seymour Pappert, as part of the Logo
programming language for teaching programming to children.

I Turtle:
I A symbolic animal that lives on the screen.
I Moves as per commands issued by the program.
I Has a pen, which draws on the screen as the turtle moves.

I Goal of turtle graphics: Draw interesting pictures on the
screen.



Getting to the essence of programming on day 1

First impressions are very important

I Convey the spirit, beauty, power of your material

I Students are fresh and more alert on day 1

Introduce programming using “Turtle Graphics”:

I Invented in 1960s by Seymour Pappert, as part of the Logo
programming language for teaching programming to children.

I Turtle:

I A symbolic animal that lives on the screen.
I Moves as per commands issued by the program.
I Has a pen, which draws on the screen as the turtle moves.

I Goal of turtle graphics: Draw interesting pictures on the
screen.



Getting to the essence of programming on day 1

First impressions are very important

I Convey the spirit, beauty, power of your material

I Students are fresh and more alert on day 1

Introduce programming using “Turtle Graphics”:

I Invented in 1960s by Seymour Pappert, as part of the Logo
programming language for teaching programming to children.

I Turtle:
I A symbolic animal that lives on the screen.

I Moves as per commands issued by the program.
I Has a pen, which draws on the screen as the turtle moves.

I Goal of turtle graphics: Draw interesting pictures on the
screen.



Getting to the essence of programming on day 1

First impressions are very important

I Convey the spirit, beauty, power of your material

I Students are fresh and more alert on day 1

Introduce programming using “Turtle Graphics”:

I Invented in 1960s by Seymour Pappert, as part of the Logo
programming language for teaching programming to children.

I Turtle:
I A symbolic animal that lives on the screen.
I Moves as per commands issued by the program.

I Has a pen, which draws on the screen as the turtle moves.

I Goal of turtle graphics: Draw interesting pictures on the
screen.



Getting to the essence of programming on day 1

First impressions are very important

I Convey the spirit, beauty, power of your material

I Students are fresh and more alert on day 1

Introduce programming using “Turtle Graphics”:

I Invented in 1960s by Seymour Pappert, as part of the Logo
programming language for teaching programming to children.

I Turtle:
I A symbolic animal that lives on the screen.
I Moves as per commands issued by the program.
I Has a pen, which draws on the screen as the turtle moves.

I Goal of turtle graphics: Draw interesting pictures on the
screen.



Getting to the essence of programming on day 1

First impressions are very important

I Convey the spirit, beauty, power of your material

I Students are fresh and more alert on day 1

Introduce programming using “Turtle Graphics”:

I Invented in 1960s by Seymour Pappert, as part of the Logo
programming language for teaching programming to children.

I Turtle:
I A symbolic animal that lives on the screen.
I Moves as per commands issued by the program.
I Has a pen, which draws on the screen as the turtle moves.

I Goal of turtle graphics: Draw interesting pictures on the
screen.



The “Hello World” program

#include <simplecpp> // also loads iostream ...

int main(){
turtleSim(); // Start turtle simulator

forward(100); // Turtle to move 100 pixels forward

right(120); // Turtle to turn right 120 degrees

forward(100);

right(120);

forward(100);

}



The “Hello World” program

#include <simplecpp> // also loads iostream ...

int main(){
turtleSim(); // Start turtle simulator

forward(100); // Turtle to move 100 pixels forward

right(120); // Turtle to turn right 120 degrees

forward(100);

right(120);

forward(100);

}



The “Hello World” program

#include <simplecpp> // also loads iostream ...

int main(){

turtleSim(); // Start turtle simulator

forward(100); // Turtle to move 100 pixels forward

right(120); // Turtle to turn right 120 degrees

forward(100);

right(120);

forward(100);

}



The “Hello World” program

#include <simplecpp> // also loads iostream ...

int main(){
turtleSim(); // Start turtle simulator

forward(100); // Turtle to move 100 pixels forward

right(120); // Turtle to turn right 120 degrees

forward(100);

right(120);

forward(100);

}



The “Hello World” program

#include <simplecpp> // also loads iostream ...

int main(){
turtleSim(); // Start turtle simulator

forward(100); // Turtle to move 100 pixels forward

right(120); // Turtle to turn right 120 degrees

forward(100);

right(120);

forward(100);

}



The “Hello World” program

#include <simplecpp> // also loads iostream ...

int main(){
turtleSim(); // Start turtle simulator

forward(100); // Turtle to move 100 pixels forward

right(120); // Turtle to turn right 120 degrees

forward(100);

right(120);

forward(100);

}



The “Hello World” program

#include <simplecpp> // also loads iostream ...

int main(){
turtleSim(); // Start turtle simulator

forward(100); // Turtle to move 100 pixels forward

right(120); // Turtle to turn right 120 degrees

forward(100);

right(120);

forward(100);

}



The “Hello World” program

#include <simplecpp> // also loads iostream ...

int main(){
turtleSim(); // Start turtle simulator

forward(100); // Turtle to move 100 pixels forward

right(120); // Turtle to turn right 120 degrees

forward(100);

right(120);

forward(100);

}



The “Hello World” program

#include <simplecpp> // also loads iostream ...

int main(){
turtleSim(); // Start turtle simulator

forward(100); // Turtle to move 100 pixels forward

right(120); // Turtle to turn right 120 degrees

forward(100);

right(120);

forward(100);

}



The “Hello World” program

#include <simplecpp> // also loads iostream ...

int main(){
turtleSim(); // Start turtle simulator

forward(100); // Turtle to move 100 pixels forward

right(120); // Turtle to turn right 120 degrees

forward(100);

right(120);

forward(100);

}



The second program for day 1

int main(){

turtleSim();

repeat(10){

forward(100); right(36);

}

}

“New statement”: repeat

repeat (count) { statements to be repeated }

Implemented using C++ macros. Students can be told later.
Statement is very easy to understand.
Introduced to enable interesting programs from day 1.



The second program for day 1

int main(){

turtleSim();

repeat(10){

forward(100); right(36);

}

}

“New statement”: repeat

repeat (count) { statements to be repeated }

Implemented using C++ macros. Students can be told later.
Statement is very easy to understand.
Introduced to enable interesting programs from day 1.



The second program for day 1

int main(){

turtleSim();

repeat(10){

forward(100); right(36);

}

}

“New statement”: repeat

repeat (count) { statements to be repeated }

Implemented using C++ macros. Students can be told later.

Statement is very easy to understand.
Introduced to enable interesting programs from day 1.



The second program for day 1

int main(){

turtleSim();

repeat(10){

forward(100); right(36);

}

}

“New statement”: repeat

repeat (count) { statements to be repeated }

Implemented using C++ macros. Students can be told later.
Statement is very easy to understand.

Introduced to enable interesting programs from day 1.



The second program for day 1

int main(){

turtleSim();

repeat(10){

forward(100); right(36);

}

}

“New statement”: repeat

repeat (count) { statements to be repeated }

Implemented using C++ macros. Students can be told later.
Statement is very easy to understand.
Introduced to enable interesting programs from day 1.



Another day 1 program

int main(){

turtleSim();

repeat(10){

repeat(4){

forward(100); right(90);

}

right(10);

}

wait(10);

}

“What do you think it does?”

This is what I ask students. Most figure it out!

Why? Because it is an interesting challenge!



Another day 1 program

int main(){

turtleSim();

repeat(10){

repeat(4){

forward(100); right(90);

}

right(10);

}

wait(10);

}

“What do you think it does?”

This is what I ask students. Most figure it out!

Why? Because it is an interesting challenge!



Another day 1 program

int main(){

turtleSim();

repeat(10){

repeat(4){

forward(100); right(90);

}

right(10);

}

wait(10);

}

“What do you think it does?”

This is what I ask students. Most figure it out!

Why? Because it is an interesting challenge!



Another day 1 program

int main(){

turtleSim();

repeat(10){

repeat(4){

forward(100); right(90);

}

right(10);

}

wait(10);

}

“What do you think it does?”

This is what I ask students. Most figure it out!

Why? Because it is an interesting challenge!



What have students learnt on day 1?

1. Control flow

2. Elementary iteration, including nested iteration

3. Basic ideas of syntax, spaces, indentation

4. Importance of observing patterns in what is to be
accomplished, and expressing them using repeat

Do not write 10 statements to draw a 10 sided polygon!
Very important activity while designing programs!

Essence of programming?

Homework on day 1: draw chessboard, draw circles (as limit of n
sided polygon). Draw 5 sided star.

Need some high school geometry. However, most programming
needs some domain knowledge.

Students are happy to do this because they can see interesting
things happening, they can feel the power.



What have students learnt on day 1?

1. Control flow

2. Elementary iteration, including nested iteration

3. Basic ideas of syntax, spaces, indentation

4. Importance of observing patterns in what is to be
accomplished, and expressing them using repeat

Do not write 10 statements to draw a 10 sided polygon!
Very important activity while designing programs!

Essence of programming?

Homework on day 1: draw chessboard, draw circles (as limit of n
sided polygon). Draw 5 sided star.

Need some high school geometry. However, most programming
needs some domain knowledge.

Students are happy to do this because they can see interesting
things happening, they can feel the power.



What have students learnt on day 1?

1. Control flow

2. Elementary iteration, including nested iteration

3. Basic ideas of syntax, spaces, indentation

4. Importance of observing patterns in what is to be
accomplished, and expressing them using repeat

Do not write 10 statements to draw a 10 sided polygon!
Very important activity while designing programs!

Essence of programming?

Homework on day 1: draw chessboard, draw circles (as limit of n
sided polygon). Draw 5 sided star.

Need some high school geometry. However, most programming
needs some domain knowledge.

Students are happy to do this because they can see interesting
things happening, they can feel the power.



What have students learnt on day 1?

1. Control flow

2. Elementary iteration, including nested iteration

3. Basic ideas of syntax, spaces, indentation

4. Importance of observing patterns in what is to be
accomplished, and expressing them using repeat

Do not write 10 statements to draw a 10 sided polygon!
Very important activity while designing programs!

Essence of programming?

Homework on day 1: draw chessboard, draw circles (as limit of n
sided polygon). Draw 5 sided star.

Need some high school geometry. However, most programming
needs some domain knowledge.

Students are happy to do this because they can see interesting
things happening, they can feel the power.



What have students learnt on day 1?

1. Control flow

2. Elementary iteration, including nested iteration

3. Basic ideas of syntax, spaces, indentation

4. Importance of observing patterns in what is to be
accomplished, and expressing them using repeat

Do not write 10 statements to draw a 10 sided polygon!
Very important activity while designing programs!

Essence of programming?

Homework on day 1: draw chessboard, draw circles (as limit of n
sided polygon). Draw 5 sided star.

Need some high school geometry. However, most programming
needs some domain knowledge.

Students are happy to do this because they can see interesting
things happening, they can feel the power.



What have students learnt on day 1?

1. Control flow

2. Elementary iteration, including nested iteration

3. Basic ideas of syntax, spaces, indentation

4. Importance of observing patterns in what is to be
accomplished, and expressing them using repeat

Do not write 10 statements to draw a 10 sided polygon!

Very important activity while designing programs!
Essence of programming?

Homework on day 1: draw chessboard, draw circles (as limit of n
sided polygon). Draw 5 sided star.

Need some high school geometry. However, most programming
needs some domain knowledge.

Students are happy to do this because they can see interesting
things happening, they can feel the power.



What have students learnt on day 1?

1. Control flow

2. Elementary iteration, including nested iteration

3. Basic ideas of syntax, spaces, indentation

4. Importance of observing patterns in what is to be
accomplished, and expressing them using repeat

Do not write 10 statements to draw a 10 sided polygon!
Very important activity while designing programs!

Essence of programming?

Homework on day 1: draw chessboard, draw circles (as limit of n
sided polygon). Draw 5 sided star.

Need some high school geometry. However, most programming
needs some domain knowledge.

Students are happy to do this because they can see interesting
things happening, they can feel the power.



What have students learnt on day 1?

1. Control flow

2. Elementary iteration, including nested iteration

3. Basic ideas of syntax, spaces, indentation

4. Importance of observing patterns in what is to be
accomplished, and expressing them using repeat

Do not write 10 statements to draw a 10 sided polygon!
Very important activity while designing programs!

Essence of programming?

Homework on day 1: draw chessboard, draw circles (as limit of n
sided polygon). Draw 5 sided star.

Need some high school geometry. However, most programming
needs some domain knowledge.

Students are happy to do this because they can see interesting
things happening, they can feel the power.



What have students learnt on day 1?

1. Control flow

2. Elementary iteration, including nested iteration

3. Basic ideas of syntax, spaces, indentation

4. Importance of observing patterns in what is to be
accomplished, and expressing them using repeat

Do not write 10 statements to draw a 10 sided polygon!
Very important activity while designing programs!

Essence of programming?

Homework on day 1: draw chessboard, draw circles (as limit of n
sided polygon). Draw 5 sided star.

Need some high school geometry. However, most programming
needs some domain knowledge.

Students are happy to do this because they can see interesting
things happening, they can feel the power.



What have students learnt on day 1?

1. Control flow

2. Elementary iteration, including nested iteration

3. Basic ideas of syntax, spaces, indentation

4. Importance of observing patterns in what is to be
accomplished, and expressing them using repeat

Do not write 10 statements to draw a 10 sided polygon!
Very important activity while designing programs!

Essence of programming?

Homework on day 1: draw chessboard, draw circles (as limit of n
sided polygon). Draw 5 sided star.

Need some high school geometry. However, most programming
needs some domain knowledge.

Students are happy to do this because they can see interesting
things happening, they can feel the power.



What have students learnt on day 1?

1. Control flow

2. Elementary iteration, including nested iteration

3. Basic ideas of syntax, spaces, indentation

4. Importance of observing patterns in what is to be
accomplished, and expressing them using repeat

Do not write 10 statements to draw a 10 sided polygon!
Very important activity while designing programs!

Essence of programming?

Homework on day 1: draw chessboard, draw circles (as limit of n
sided polygon). Draw 5 sided star.

Need some high school geometry. However, most programming
needs some domain knowledge.

Students are happy to do this because they can see interesting
things happening, they can feel the power.



Final day 1 activity: demo

Give a demo that shows off some of the things that can be done in
the course.

I Drawing interesting patterns: Needs careful calculation

I Drawing trees: exercise in recursion.

I Bouncing Balls, planetary motion: simulation of physical
systems

I Airport simulation

I Cars: exercise in composing graphics objects

Demo may inspire students to do something for its sake, rather
than for an exam.

Demo conveys what we expect, what is possible after the course.



Final day 1 activity: demo

Give a demo that shows off some of the things that can be done in
the course.

I Drawing interesting patterns: Needs careful calculation

I Drawing trees: exercise in recursion.

I Bouncing Balls, planetary motion: simulation of physical
systems

I Airport simulation

I Cars: exercise in composing graphics objects

Demo may inspire students to do something for its sake, rather
than for an exam.

Demo conveys what we expect, what is possible after the course.



Final day 1 activity: demo

Give a demo that shows off some of the things that can be done in
the course.

I Drawing interesting patterns: Needs careful calculation

I Drawing trees: exercise in recursion.

I Bouncing Balls, planetary motion: simulation of physical
systems

I Airport simulation

I Cars: exercise in composing graphics objects

Demo may inspire students to do something for its sake, rather
than for an exam.

Demo conveys what we expect, what is possible after the course.



Final day 1 activity: demo

Give a demo that shows off some of the things that can be done in
the course.

I Drawing interesting patterns: Needs careful calculation

I Drawing trees: exercise in recursion.

I Bouncing Balls, planetary motion: simulation of physical
systems

I Airport simulation

I Cars: exercise in composing graphics objects

Demo may inspire students to do something for its sake, rather
than for an exam.

Demo conveys what we expect, what is possible after the course.



Final day 1 activity: demo

Give a demo that shows off some of the things that can be done in
the course.

I Drawing interesting patterns: Needs careful calculation

I Drawing trees: exercise in recursion.

I Bouncing Balls, planetary motion: simulation of physical
systems

I Airport simulation

I Cars: exercise in composing graphics objects

Demo may inspire students to do something for its sake, rather
than for an exam.

Demo conveys what we expect, what is possible after the course.



Final day 1 activity: demo

Give a demo that shows off some of the things that can be done in
the course.

I Drawing interesting patterns: Needs careful calculation

I Drawing trees: exercise in recursion.

I Bouncing Balls, planetary motion: simulation of physical
systems

I Airport simulation

I Cars: exercise in composing graphics objects

Demo may inspire students to do something for its sake, rather
than for an exam.

Demo conveys what we expect, what is possible after the course.



Final day 1 activity: demo

Give a demo that shows off some of the things that can be done in
the course.

I Drawing interesting patterns: Needs careful calculation

I Drawing trees: exercise in recursion.

I Bouncing Balls, planetary motion: simulation of physical
systems

I Airport simulation

I Cars: exercise in composing graphics objects

Demo may inspire students to do something for its sake, rather
than for an exam.

Demo conveys what we expect, what is possible after the course.



Final day 1 activity: demo

Give a demo that shows off some of the things that can be done in
the course.

I Drawing interesting patterns: Needs careful calculation

I Drawing trees: exercise in recursion.

I Bouncing Balls, planetary motion: simulation of physical
systems

I Airport simulation

I Cars: exercise in composing graphics objects

Demo may inspire students to do something for its sake, rather
than for an exam.

Demo conveys what we expect, what is possible after the course.



Final day 1 activity: demo

Give a demo that shows off some of the things that can be done in
the course.

I Drawing interesting patterns: Needs careful calculation

I Drawing trees: exercise in recursion.

I Bouncing Balls, planetary motion: simulation of physical
systems

I Airport simulation

I Cars: exercise in composing graphics objects

Demo may inspire students to do something for its sake, rather
than for an exam.

Demo conveys what we expect, what is possible after the course.



Sustaining the excitement after day 1

Topics for day 2/week 2: “How a computer works?”. Data types
and variables. Assignment statements.

Standard teaching style: Information overload about number
representation, assignment statements and its facets: truncation..

Can we make this interesting and active?

repeat can bring out power of assignment statement

I Draw more interesting pictures.

repeat(10){forward(i); right(90); i = i + 10;}

I Discuss accumulation and sequence generation idioms

int i=1, sum=0, val=0;

repeat(10){ cin >> val; sum = sum + val; } // accum.

repeat(10){ cout << i << endl; i = i * 2;} //seq gen.

These idioms would normally be written using while/for, which
are too complicated for week 2.



Sustaining the excitement after day 1
Topics for day 2/week 2: “How a computer works?”. Data types
and variables. Assignment statements.

Standard teaching style: Information overload about number
representation, assignment statements and its facets: truncation..

Can we make this interesting and active?

repeat can bring out power of assignment statement

I Draw more interesting pictures.

repeat(10){forward(i); right(90); i = i + 10;}

I Discuss accumulation and sequence generation idioms

int i=1, sum=0, val=0;

repeat(10){ cin >> val; sum = sum + val; } // accum.

repeat(10){ cout << i << endl; i = i * 2;} //seq gen.

These idioms would normally be written using while/for, which
are too complicated for week 2.



Sustaining the excitement after day 1
Topics for day 2/week 2: “How a computer works?”. Data types
and variables. Assignment statements.

Standard teaching style: Information overload about number
representation, assignment statements and its facets: truncation..

Can we make this interesting and active?

repeat can bring out power of assignment statement

I Draw more interesting pictures.

repeat(10){forward(i); right(90); i = i + 10;}

I Discuss accumulation and sequence generation idioms

int i=1, sum=0, val=0;

repeat(10){ cin >> val; sum = sum + val; } // accum.

repeat(10){ cout << i << endl; i = i * 2;} //seq gen.

These idioms would normally be written using while/for, which
are too complicated for week 2.



Sustaining the excitement after day 1
Topics for day 2/week 2: “How a computer works?”. Data types
and variables. Assignment statements.

Standard teaching style: Information overload about number
representation, assignment statements and its facets: truncation..

Can we make this interesting and active?

repeat can bring out power of assignment statement

I Draw more interesting pictures.

repeat(10){forward(i); right(90); i = i + 10;}

I Discuss accumulation and sequence generation idioms

int i=1, sum=0, val=0;

repeat(10){ cin >> val; sum = sum + val; } // accum.

repeat(10){ cout << i << endl; i = i * 2;} //seq gen.

These idioms would normally be written using while/for, which
are too complicated for week 2.



Sustaining the excitement after day 1
Topics for day 2/week 2: “How a computer works?”. Data types
and variables. Assignment statements.

Standard teaching style: Information overload about number
representation, assignment statements and its facets: truncation..

Can we make this interesting and active?

repeat can bring out power of assignment statement

I Draw more interesting pictures.

repeat(10){forward(i); right(90); i = i + 10;}

I Discuss accumulation and sequence generation idioms

int i=1, sum=0, val=0;

repeat(10){ cin >> val; sum = sum + val; } // accum.

repeat(10){ cout << i << endl; i = i * 2;} //seq gen.

These idioms would normally be written using while/for, which
are too complicated for week 2.



Sustaining the excitement after day 1
Topics for day 2/week 2: “How a computer works?”. Data types
and variables. Assignment statements.

Standard teaching style: Information overload about number
representation, assignment statements and its facets: truncation..

Can we make this interesting and active?

repeat can bring out power of assignment statement

I Draw more interesting pictures.

repeat(10){forward(i); right(90); i = i + 10;}

I Discuss accumulation and sequence generation idioms

int i=1, sum=0, val=0;

repeat(10){ cin >> val; sum = sum + val; } // accum.

repeat(10){ cout << i << endl; i = i * 2;} //seq gen.

These idioms would normally be written using while/for, which
are too complicated for week 2.



Sustaining the excitement after day 1
Topics for day 2/week 2: “How a computer works?”. Data types
and variables. Assignment statements.

Standard teaching style: Information overload about number
representation, assignment statements and its facets: truncation..

Can we make this interesting and active?

repeat can bring out power of assignment statement

I Draw more interesting pictures.

repeat(10){forward(i); right(90); i = i + 10;}

I Discuss accumulation and sequence generation idioms

int i=1, sum=0, val=0;

repeat(10){ cin >> val; sum = sum + val; } // accum.

repeat(10){ cout << i << endl; i = i * 2;} //seq gen.

These idioms would normally be written using while/for, which
are too complicated for week 2.



Sustaining the excitement after day 1
Topics for day 2/week 2: “How a computer works?”. Data types
and variables. Assignment statements.

Standard teaching style: Information overload about number
representation, assignment statements and its facets: truncation..

Can we make this interesting and active?

repeat can bring out power of assignment statement

I Draw more interesting pictures.

repeat(10){forward(i); right(90); i = i + 10;}

I Discuss accumulation and sequence generation idioms

int i=1, sum=0, val=0;

repeat(10){ cin >> val; sum = sum + val; } // accum.

repeat(10){ cout << i << endl; i = i * 2;} //seq gen.

These idioms would normally be written using while/for, which
are too complicated for week 2.



Sustaining the excitement after day 1
Topics for day 2/week 2: “How a computer works?”. Data types
and variables. Assignment statements.

Standard teaching style: Information overload about number
representation, assignment statements and its facets: truncation..

Can we make this interesting and active?

repeat can bring out power of assignment statement

I Draw more interesting pictures.

repeat(10){forward(i); right(90); i = i + 10;}

I Discuss accumulation and sequence generation idioms

int i=1, sum=0, val=0;

repeat(10){ cin >> val; sum = sum + val; } // accum.

repeat(10){ cout << i << endl; i = i * 2;} //seq gen.

These idioms would normally be written using while/for, which
are too complicated for week 2.



Sustaining the excitement after day 1
Topics for day 2/week 2: “How a computer works?”. Data types
and variables. Assignment statements.

Standard teaching style: Information overload about number
representation, assignment statements and its facets: truncation..

Can we make this interesting and active?

repeat can bring out power of assignment statement

I Draw more interesting pictures.

repeat(10){forward(i); right(90); i = i + 10;}

I Discuss accumulation and sequence generation idioms

int i=1, sum=0, val=0;

repeat(10){ cin >> val; sum = sum + val; } // accum.

repeat(10){ cout << i << endl; i = i * 2;} //seq gen.

These idioms would normally be written using while/for, which
are too complicated for week 2.



Teaching program Design



Conventional wisdom: Programming is hard

Fact: In standards 1-12, students learn sophisticated algorithms for
solving many problems manually.

I Integer arithmetic, factoring, GCD, ... (from primary school!)

I Arithmetic on matrices, polynomials

I Calculus: integration, differentiation

I Geometric constructions

I Solving physics problems

I Balancing chemical equations

I Tax calculation, elementary commerce

Observation: The programming exercises we ask in intro
programming are typically much simpler than above problems!

Our students can execute complex algorithms

But they cannot write programs based on simple algorithms!



Conventional wisdom: Programming is hard
Fact: In standards 1-12, students learn sophisticated algorithms for
solving many problems manually.

I Integer arithmetic, factoring, GCD, ... (from primary school!)

I Arithmetic on matrices, polynomials

I Calculus: integration, differentiation

I Geometric constructions

I Solving physics problems

I Balancing chemical equations

I Tax calculation, elementary commerce

Observation: The programming exercises we ask in intro
programming are typically much simpler than above problems!

Our students can execute complex algorithms

But they cannot write programs based on simple algorithms!



Conventional wisdom: Programming is hard
Fact: In standards 1-12, students learn sophisticated algorithms for
solving many problems manually.

I Integer arithmetic, factoring, GCD, ... (from primary school!)

I Arithmetic on matrices, polynomials

I Calculus: integration, differentiation

I Geometric constructions

I Solving physics problems

I Balancing chemical equations

I Tax calculation, elementary commerce

Observation: The programming exercises we ask in intro
programming are typically much simpler than above problems!

Our students can execute complex algorithms

But they cannot write programs based on simple algorithms!



Conventional wisdom: Programming is hard
Fact: In standards 1-12, students learn sophisticated algorithms for
solving many problems manually.

I Integer arithmetic, factoring, GCD, ... (from primary school!)

I Arithmetic on matrices, polynomials

I Calculus: integration, differentiation

I Geometric constructions

I Solving physics problems

I Balancing chemical equations

I Tax calculation, elementary commerce

Observation: The programming exercises we ask in intro
programming are typically much simpler than above problems!

Our students can execute complex algorithms

But they cannot write programs based on simple algorithms!



Conventional wisdom: Programming is hard
Fact: In standards 1-12, students learn sophisticated algorithms for
solving many problems manually.

I Integer arithmetic, factoring, GCD, ... (from primary school!)

I Arithmetic on matrices, polynomials

I Calculus: integration, differentiation

I Geometric constructions

I Solving physics problems

I Balancing chemical equations

I Tax calculation, elementary commerce

Observation: The programming exercises we ask in intro
programming are typically much simpler than above problems!

Our students can execute complex algorithms

But they cannot write programs based on simple algorithms!



Conventional wisdom: Programming is hard
Fact: In standards 1-12, students learn sophisticated algorithms for
solving many problems manually.

I Integer arithmetic, factoring, GCD, ... (from primary school!)

I Arithmetic on matrices, polynomials

I Calculus: integration, differentiation

I Geometric constructions

I Solving physics problems

I Balancing chemical equations

I Tax calculation, elementary commerce

Observation: The programming exercises we ask in intro
programming are typically much simpler than above problems!

Our students can execute complex algorithms

But they cannot write programs based on simple algorithms!



Conventional wisdom: Programming is hard
Fact: In standards 1-12, students learn sophisticated algorithms for
solving many problems manually.

I Integer arithmetic, factoring, GCD, ... (from primary school!)

I Arithmetic on matrices, polynomials

I Calculus: integration, differentiation

I Geometric constructions

I Solving physics problems

I Balancing chemical equations

I Tax calculation, elementary commerce

Observation: The programming exercises we ask in intro
programming are typically much simpler than above problems!

Our students can execute complex algorithms

But they cannot write programs based on simple algorithms!



Conventional wisdom: Programming is hard
Fact: In standards 1-12, students learn sophisticated algorithms for
solving many problems manually.

I Integer arithmetic, factoring, GCD, ... (from primary school!)

I Arithmetic on matrices, polynomials

I Calculus: integration, differentiation

I Geometric constructions

I Solving physics problems

I Balancing chemical equations

I Tax calculation, elementary commerce

Observation: The programming exercises we ask in intro
programming are typically much simpler than above problems!

Our students can execute complex algorithms

But they cannot write programs based on simple algorithms!



Conventional wisdom: Programming is hard
Fact: In standards 1-12, students learn sophisticated algorithms for
solving many problems manually.

I Integer arithmetic, factoring, GCD, ... (from primary school!)

I Arithmetic on matrices, polynomials

I Calculus: integration, differentiation

I Geometric constructions

I Solving physics problems

I Balancing chemical equations

I Tax calculation, elementary commerce

Observation: The programming exercises we ask in intro
programming are typically much simpler than above problems!

Our students can execute complex algorithms

But they cannot write programs based on simple algorithms!



Conventional wisdom: Programming is hard
Fact: In standards 1-12, students learn sophisticated algorithms for
solving many problems manually.

I Integer arithmetic, factoring, GCD, ... (from primary school!)

I Arithmetic on matrices, polynomials

I Calculus: integration, differentiation

I Geometric constructions

I Solving physics problems

I Balancing chemical equations

I Tax calculation, elementary commerce

Observation: The programming exercises we ask in intro
programming are typically much simpler than above problems!

Our students can execute complex algorithms

But they cannot write programs based on simple algorithms!



Conventional wisdom: Programming is hard
Fact: In standards 1-12, students learn sophisticated algorithms for
solving many problems manually.

I Integer arithmetic, factoring, GCD, ... (from primary school!)

I Arithmetic on matrices, polynomials

I Calculus: integration, differentiation

I Geometric constructions

I Solving physics problems

I Balancing chemical equations

I Tax calculation, elementary commerce

Observation: The programming exercises we ask in intro
programming are typically much simpler than above problems!

Our students can execute complex algorithms

But they cannot write programs based on simple algorithms!



Conventional wisdom: Programming is hard
Fact: In standards 1-12, students learn sophisticated algorithms for
solving many problems manually.

I Integer arithmetic, factoring, GCD, ... (from primary school!)

I Arithmetic on matrices, polynomials

I Calculus: integration, differentiation

I Geometric constructions

I Solving physics problems

I Balancing chemical equations

I Tax calculation, elementary commerce

Observation: The programming exercises we ask in intro
programming are typically much simpler than above problems!

Our students can execute complex algorithms

But they cannot write programs based on simple algorithms!



A proposol to resolve the mystery

“Students understand algorithms intuitively, not algebraically”
Example: Integer multiplication

I Our students were not taught: “In the jth subiteration of the
ith iteration, multiply the jth digit of the multiplier by the ith
digit of the multiplicand”

I Our students know the algorithm as a geometric tableau –
how you arrange the partial products in a staggered manner.

What is needed for programming:

I An algebraic description of the computation.

Hypothesis: Students have difficulty in translating from their
intuitive/geometric understanding to an algebraic representation.



A proposol to resolve the mystery

“Students understand algorithms intuitively, not algebraically”

Example: Integer multiplication

I Our students were not taught: “In the jth subiteration of the
ith iteration, multiply the jth digit of the multiplier by the ith
digit of the multiplicand”

I Our students know the algorithm as a geometric tableau –
how you arrange the partial products in a staggered manner.

What is needed for programming:

I An algebraic description of the computation.

Hypothesis: Students have difficulty in translating from their
intuitive/geometric understanding to an algebraic representation.



A proposol to resolve the mystery

“Students understand algorithms intuitively, not algebraically”
Example: Integer multiplication

I Our students were not taught: “In the jth subiteration of the
ith iteration, multiply the jth digit of the multiplier by the ith
digit of the multiplicand”

I Our students know the algorithm as a geometric tableau –
how you arrange the partial products in a staggered manner.

What is needed for programming:

I An algebraic description of the computation.

Hypothesis: Students have difficulty in translating from their
intuitive/geometric understanding to an algebraic representation.



A proposol to resolve the mystery

“Students understand algorithms intuitively, not algebraically”
Example: Integer multiplication

I Our students were not taught: “In the jth subiteration of the
ith iteration, multiply the jth digit of the multiplier by the ith
digit of the multiplicand”

I Our students know the algorithm as a geometric tableau –
how you arrange the partial products in a staggered manner.

What is needed for programming:

I An algebraic description of the computation.

Hypothesis: Students have difficulty in translating from their
intuitive/geometric understanding to an algebraic representation.



A proposol to resolve the mystery

“Students understand algorithms intuitively, not algebraically”
Example: Integer multiplication

I Our students were not taught: “In the jth subiteration of the
ith iteration, multiply the jth digit of the multiplier by the ith
digit of the multiplicand”

I Our students know the algorithm as a geometric tableau –
how you arrange the partial products in a staggered manner.

What is needed for programming:

I An algebraic description of the computation.

Hypothesis: Students have difficulty in translating from their
intuitive/geometric understanding to an algebraic representation.



A proposol to resolve the mystery

“Students understand algorithms intuitively, not algebraically”
Example: Integer multiplication

I Our students were not taught: “In the jth subiteration of the
ith iteration, multiply the jth digit of the multiplier by the ith
digit of the multiplicand”

I Our students know the algorithm as a geometric tableau –
how you arrange the partial products in a staggered manner.

What is needed for programming:

I An algebraic description of the computation.

Hypothesis: Students have difficulty in translating from their
intuitive/geometric understanding to an algebraic representation.



A proposol to resolve the mystery

“Students understand algorithms intuitively, not algebraically”
Example: Integer multiplication

I Our students were not taught: “In the jth subiteration of the
ith iteration, multiply the jth digit of the multiplier by the ith
digit of the multiplicand”

I Our students know the algorithm as a geometric tableau –
how you arrange the partial products in a staggered manner.

What is needed for programming:

I An algebraic description of the computation.

Hypothesis: Students have difficulty in translating from their
intuitive/geometric understanding to an algebraic representation.



A proposol to resolve the mystery

“Students understand algorithms intuitively, not algebraically”
Example: Integer multiplication

I Our students were not taught: “In the jth subiteration of the
ith iteration, multiply the jth digit of the multiplier by the ith
digit of the multiplicand”

I Our students know the algorithm as a geometric tableau –
how you arrange the partial products in a staggered manner.

What is needed for programming:

I An algebraic description of the computation.

Hypothesis: Students have difficulty in translating from their
intuitive/geometric understanding to an algebraic representation.



Towards resolving the crisis

Pedagogy Proposal 1: Our general advice to students should be:

1. First think of how you solve the problem manually.
Assume for now: student can solve problem manually.

2. Introspect over the manual method.
Become aware of your own thought process..

3. Find patterns in what you are doing in the manual algorithm
and write down the patterns algebraically.

Pedagogy Proposal 2: We should explicitly teach how to translate
from human computation to computer computation

I Human computation does not have “variables”.
Students have difficulty in forming and manipulating variables.

I Humans seem to see everything in a glance.
A computer operates on few variables at a time.



Towards resolving the crisis

Pedagogy Proposal 1: Our general advice to students should be:

1. First think of how you solve the problem manually.
Assume for now: student can solve problem manually.

2. Introspect over the manual method.
Become aware of your own thought process..

3. Find patterns in what you are doing in the manual algorithm
and write down the patterns algebraically.

Pedagogy Proposal 2: We should explicitly teach how to translate
from human computation to computer computation

I Human computation does not have “variables”.
Students have difficulty in forming and manipulating variables.

I Humans seem to see everything in a glance.
A computer operates on few variables at a time.



Towards resolving the crisis

Pedagogy Proposal 1: Our general advice to students should be:

1. First think of how you solve the problem manually.

Assume for now: student can solve problem manually.

2. Introspect over the manual method.
Become aware of your own thought process..

3. Find patterns in what you are doing in the manual algorithm
and write down the patterns algebraically.

Pedagogy Proposal 2: We should explicitly teach how to translate
from human computation to computer computation

I Human computation does not have “variables”.
Students have difficulty in forming and manipulating variables.

I Humans seem to see everything in a glance.
A computer operates on few variables at a time.



Towards resolving the crisis

Pedagogy Proposal 1: Our general advice to students should be:

1. First think of how you solve the problem manually.
Assume for now: student can solve problem manually.

2. Introspect over the manual method.
Become aware of your own thought process..

3. Find patterns in what you are doing in the manual algorithm
and write down the patterns algebraically.

Pedagogy Proposal 2: We should explicitly teach how to translate
from human computation to computer computation

I Human computation does not have “variables”.
Students have difficulty in forming and manipulating variables.

I Humans seem to see everything in a glance.
A computer operates on few variables at a time.



Towards resolving the crisis

Pedagogy Proposal 1: Our general advice to students should be:

1. First think of how you solve the problem manually.
Assume for now: student can solve problem manually.

2. Introspect over the manual method.

Become aware of your own thought process..

3. Find patterns in what you are doing in the manual algorithm
and write down the patterns algebraically.

Pedagogy Proposal 2: We should explicitly teach how to translate
from human computation to computer computation

I Human computation does not have “variables”.
Students have difficulty in forming and manipulating variables.

I Humans seem to see everything in a glance.
A computer operates on few variables at a time.



Towards resolving the crisis

Pedagogy Proposal 1: Our general advice to students should be:

1. First think of how you solve the problem manually.
Assume for now: student can solve problem manually.

2. Introspect over the manual method.
Become aware of your own thought process..

3. Find patterns in what you are doing in the manual algorithm
and write down the patterns algebraically.

Pedagogy Proposal 2: We should explicitly teach how to translate
from human computation to computer computation

I Human computation does not have “variables”.
Students have difficulty in forming and manipulating variables.

I Humans seem to see everything in a glance.
A computer operates on few variables at a time.



Towards resolving the crisis

Pedagogy Proposal 1: Our general advice to students should be:

1. First think of how you solve the problem manually.
Assume for now: student can solve problem manually.

2. Introspect over the manual method.
Become aware of your own thought process..

3. Find patterns in what you are doing in the manual algorithm
and write down the patterns algebraically.

Pedagogy Proposal 2: We should explicitly teach how to translate
from human computation to computer computation

I Human computation does not have “variables”.
Students have difficulty in forming and manipulating variables.

I Humans seem to see everything in a glance.
A computer operates on few variables at a time.



Towards resolving the crisis

Pedagogy Proposal 1: Our general advice to students should be:

1. First think of how you solve the problem manually.
Assume for now: student can solve problem manually.

2. Introspect over the manual method.
Become aware of your own thought process..

3. Find patterns in what you are doing in the manual algorithm
and write down the patterns algebraically.

Pedagogy Proposal 2: We should explicitly teach how to translate
from human computation to computer computation

I Human computation does not have “variables”.
Students have difficulty in forming and manipulating variables.

I Humans seem to see everything in a glance.
A computer operates on few variables at a time.



Towards resolving the crisis

Pedagogy Proposal 1: Our general advice to students should be:

1. First think of how you solve the problem manually.
Assume for now: student can solve problem manually.

2. Introspect over the manual method.
Become aware of your own thought process..

3. Find patterns in what you are doing in the manual algorithm
and write down the patterns algebraically.

Pedagogy Proposal 2: We should explicitly teach how to translate
from human computation to computer computation

I Human computation does not have “variables”.

Students have difficulty in forming and manipulating variables.

I Humans seem to see everything in a glance.
A computer operates on few variables at a time.



Towards resolving the crisis

Pedagogy Proposal 1: Our general advice to students should be:

1. First think of how you solve the problem manually.
Assume for now: student can solve problem manually.

2. Introspect over the manual method.
Become aware of your own thought process..

3. Find patterns in what you are doing in the manual algorithm
and write down the patterns algebraically.

Pedagogy Proposal 2: We should explicitly teach how to translate
from human computation to computer computation

I Human computation does not have “variables”.
Students have difficulty in forming and manipulating variables.

I Humans seem to see everything in a glance.
A computer operates on few variables at a time.



Towards resolving the crisis

Pedagogy Proposal 1: Our general advice to students should be:

1. First think of how you solve the problem manually.
Assume for now: student can solve problem manually.

2. Introspect over the manual method.
Become aware of your own thought process..

3. Find patterns in what you are doing in the manual algorithm
and write down the patterns algebraically.

Pedagogy Proposal 2: We should explicitly teach how to translate
from human computation to computer computation

I Human computation does not have “variables”.
Students have difficulty in forming and manipulating variables.

I Humans seem to see everything in a glance.

A computer operates on few variables at a time.



Towards resolving the crisis

Pedagogy Proposal 1: Our general advice to students should be:

1. First think of how you solve the problem manually.
Assume for now: student can solve problem manually.

2. Introspect over the manual method.
Become aware of your own thought process..

3. Find patterns in what you are doing in the manual algorithm
and write down the patterns algebraically.

Pedagogy Proposal 2: We should explicitly teach how to translate
from human computation to computer computation

I Human computation does not have “variables”.
Students have difficulty in forming and manipulating variables.

I Humans seem to see everything in a glance.
A computer operates on few variables at a time.



Example 1: Computing the value of e

Write a program to compute e = 1
0! + 1

1! + 1
2! + 1

3! + . . . by adding
n terms.

Our students can surely do this manually!

But for writing a program, they will have many questions..

I Do we need a loop?

I How many iterations will it run?

I What variables to use?

I How to update the variables in each iteration?

Students actually like this explained...



Example 1: Computing the value of e

Write a program to compute e = 1
0! + 1

1! + 1
2! + 1

3! + . . . by adding
n terms.

Our students can surely do this manually!

But for writing a program, they will have many questions..

I Do we need a loop?

I How many iterations will it run?

I What variables to use?

I How to update the variables in each iteration?

Students actually like this explained...



Example 1: Computing the value of e

Write a program to compute e = 1
0! + 1

1! + 1
2! + 1

3! + . . . by adding
n terms.

Our students can surely do this manually!

But for writing a program, they will have many questions..

I Do we need a loop?

I How many iterations will it run?

I What variables to use?

I How to update the variables in each iteration?

Students actually like this explained...



Example 1: Computing the value of e

Write a program to compute e = 1
0! + 1

1! + 1
2! + 1

3! + . . . by adding
n terms.

Our students can surely do this manually!

But for writing a program, they will have many questions..

I Do we need a loop?

I How many iterations will it run?

I What variables to use?

I How to update the variables in each iteration?

Students actually like this explained...



Example 1: Computing the value of e

Write a program to compute e = 1
0! + 1

1! + 1
2! + 1

3! + . . . by adding
n terms.

Our students can surely do this manually!

But for writing a program, they will have many questions..

I Do we need a loop?

I How many iterations will it run?

I What variables to use?

I How to update the variables in each iteration?

Students actually like this explained...



Example 1: Computing the value of e

Write a program to compute e = 1
0! + 1

1! + 1
2! + 1

3! + . . . by adding
n terms.

Our students can surely do this manually!

But for writing a program, they will have many questions..

I Do we need a loop?

I How many iterations will it run?

I What variables to use?

I How to update the variables in each iteration?

Students actually like this explained...



Example 1: Computing the value of e

Write a program to compute e = 1
0! + 1

1! + 1
2! + 1

3! + . . . by adding
n terms.

Our students can surely do this manually!

But for writing a program, they will have many questions..

I Do we need a loop?

I How many iterations will it run?

I What variables to use?

I How to update the variables in each iteration?

Students actually like this explained...



Example 1: Computing the value of e

Write a program to compute e = 1
0! + 1

1! + 1
2! + 1

3! + . . . by adding
n terms.

Our students can surely do this manually!

But for writing a program, they will have many questions..

I Do we need a loop?

I How many iterations will it run?

I What variables to use?

I How to update the variables in each iteration?

Students actually like this explained...



Example 1: Computing the value of e

Write a program to compute e = 1
0! + 1

1! + 1
2! + 1

3! + . . . by adding
n terms.

Our students can surely do this manually!

But for writing a program, they will have many questions..

I Do we need a loop?

I How many iterations will it run?

I What variables to use?

I How to update the variables in each iteration?

Students actually like this explained...



Computing the value of e (contd.)

Our suggested strategy: First observe what you do manually
I (Manual) computation has n − 1 phases.
I In ith phase, you calculate the value of 1

i!

Value calculated in ith phase = value in i − 1 th phase
i .

I At this point you might realize it is better to give names,
ti = term calculated in ith iteration.
si = sum calculated in ith iteration.

I Above observation: ti = ti−1/i . Also si = si−1 + ti
Different from pseudocode/flowchat: si , ti are names of values.

“Next write the program”
I n − 1 phases −→ loop that runs n − 1 times
I Use variables s,t to store the values si , ti .

double s=1, t=1; int i=1, n; cin >> n;

repeat(n-1){

t = t / i; s = s + t; i = i + 1;

}



Computing the value of e (contd.)
Our suggested strategy: First observe what you do manually

I (Manual) computation has n − 1 phases.
I In ith phase, you calculate the value of 1

i!

Value calculated in ith phase = value in i − 1 th phase
i .

I At this point you might realize it is better to give names,
ti = term calculated in ith iteration.
si = sum calculated in ith iteration.

I Above observation: ti = ti−1/i . Also si = si−1 + ti
Different from pseudocode/flowchat: si , ti are names of values.

“Next write the program”
I n − 1 phases −→ loop that runs n − 1 times
I Use variables s,t to store the values si , ti .

double s=1, t=1; int i=1, n; cin >> n;

repeat(n-1){

t = t / i; s = s + t; i = i + 1;

}



Computing the value of e (contd.)
Our suggested strategy: First observe what you do manually

I (Manual) computation has n − 1 phases.

I In ith phase, you calculate the value of 1
i!

Value calculated in ith phase = value in i − 1 th phase
i .

I At this point you might realize it is better to give names,
ti = term calculated in ith iteration.
si = sum calculated in ith iteration.

I Above observation: ti = ti−1/i . Also si = si−1 + ti
Different from pseudocode/flowchat: si , ti are names of values.

“Next write the program”
I n − 1 phases −→ loop that runs n − 1 times
I Use variables s,t to store the values si , ti .

double s=1, t=1; int i=1, n; cin >> n;

repeat(n-1){

t = t / i; s = s + t; i = i + 1;

}



Computing the value of e (contd.)
Our suggested strategy: First observe what you do manually

I (Manual) computation has n − 1 phases.
I In ith phase, you calculate the value of 1

i!

Value calculated in ith phase = value in i − 1 th phase
i .

I At this point you might realize it is better to give names,
ti = term calculated in ith iteration.
si = sum calculated in ith iteration.

I Above observation: ti = ti−1/i . Also si = si−1 + ti
Different from pseudocode/flowchat: si , ti are names of values.

“Next write the program”
I n − 1 phases −→ loop that runs n − 1 times
I Use variables s,t to store the values si , ti .

double s=1, t=1; int i=1, n; cin >> n;

repeat(n-1){

t = t / i; s = s + t; i = i + 1;

}



Computing the value of e (contd.)
Our suggested strategy: First observe what you do manually

I (Manual) computation has n − 1 phases.
I In ith phase, you calculate the value of 1

i!

Value calculated in ith phase = value in i − 1 th phase
i .

I At this point you might realize it is better to give names,
ti = term calculated in ith iteration.
si = sum calculated in ith iteration.

I Above observation: ti = ti−1/i . Also si = si−1 + ti
Different from pseudocode/flowchat: si , ti are names of values.

“Next write the program”
I n − 1 phases −→ loop that runs n − 1 times
I Use variables s,t to store the values si , ti .

double s=1, t=1; int i=1, n; cin >> n;

repeat(n-1){

t = t / i; s = s + t; i = i + 1;

}



Computing the value of e (contd.)
Our suggested strategy: First observe what you do manually

I (Manual) computation has n − 1 phases.
I In ith phase, you calculate the value of 1

i!

Value calculated in ith phase = value in i − 1 th phase
i .

I At this point you might realize it is better to give names,
ti = term calculated in ith iteration.
si = sum calculated in ith iteration.

I Above observation: ti = ti−1/i . Also si = si−1 + ti
Different from pseudocode/flowchat: si , ti are names of values.

“Next write the program”
I n − 1 phases −→ loop that runs n − 1 times
I Use variables s,t to store the values si , ti .

double s=1, t=1; int i=1, n; cin >> n;

repeat(n-1){

t = t / i; s = s + t; i = i + 1;

}



Computing the value of e (contd.)
Our suggested strategy: First observe what you do manually

I (Manual) computation has n − 1 phases.
I In ith phase, you calculate the value of 1

i!

Value calculated in ith phase = value in i − 1 th phase
i .

I At this point you might realize it is better to give names,
ti = term calculated in ith iteration.
si = sum calculated in ith iteration.

I Above observation: ti = ti−1/i .

Also si = si−1 + ti
Different from pseudocode/flowchat: si , ti are names of values.

“Next write the program”
I n − 1 phases −→ loop that runs n − 1 times
I Use variables s,t to store the values si , ti .

double s=1, t=1; int i=1, n; cin >> n;

repeat(n-1){

t = t / i; s = s + t; i = i + 1;

}



Computing the value of e (contd.)
Our suggested strategy: First observe what you do manually

I (Manual) computation has n − 1 phases.
I In ith phase, you calculate the value of 1

i!

Value calculated in ith phase = value in i − 1 th phase
i .

I At this point you might realize it is better to give names,
ti = term calculated in ith iteration.
si = sum calculated in ith iteration.

I Above observation: ti = ti−1/i . Also si = si−1 + ti

Different from pseudocode/flowchat: si , ti are names of values.

“Next write the program”
I n − 1 phases −→ loop that runs n − 1 times
I Use variables s,t to store the values si , ti .

double s=1, t=1; int i=1, n; cin >> n;

repeat(n-1){

t = t / i; s = s + t; i = i + 1;

}



Computing the value of e (contd.)
Our suggested strategy: First observe what you do manually

I (Manual) computation has n − 1 phases.
I In ith phase, you calculate the value of 1

i!

Value calculated in ith phase = value in i − 1 th phase
i .

I At this point you might realize it is better to give names,
ti = term calculated in ith iteration.
si = sum calculated in ith iteration.

I Above observation: ti = ti−1/i . Also si = si−1 + ti
Different from pseudocode/flowchat: si , ti are names of values.

“Next write the program”
I n − 1 phases −→ loop that runs n − 1 times
I Use variables s,t to store the values si , ti .

double s=1, t=1; int i=1, n; cin >> n;

repeat(n-1){

t = t / i; s = s + t; i = i + 1;

}



Computing the value of e (contd.)
Our suggested strategy: First observe what you do manually

I (Manual) computation has n − 1 phases.
I In ith phase, you calculate the value of 1

i!

Value calculated in ith phase = value in i − 1 th phase
i .

I At this point you might realize it is better to give names,
ti = term calculated in ith iteration.
si = sum calculated in ith iteration.

I Above observation: ti = ti−1/i . Also si = si−1 + ti
Different from pseudocode/flowchat: si , ti are names of values.

“Next write the program”

I n − 1 phases −→ loop that runs n − 1 times
I Use variables s,t to store the values si , ti .

double s=1, t=1; int i=1, n; cin >> n;

repeat(n-1){

t = t / i; s = s + t; i = i + 1;

}



Computing the value of e (contd.)
Our suggested strategy: First observe what you do manually

I (Manual) computation has n − 1 phases.
I In ith phase, you calculate the value of 1

i!

Value calculated in ith phase = value in i − 1 th phase
i .

I At this point you might realize it is better to give names,
ti = term calculated in ith iteration.
si = sum calculated in ith iteration.

I Above observation: ti = ti−1/i . Also si = si−1 + ti
Different from pseudocode/flowchat: si , ti are names of values.

“Next write the program”
I n − 1 phases −→ loop that runs n − 1 times

I Use variables s,t to store the values si , ti .

double s=1, t=1; int i=1, n; cin >> n;

repeat(n-1){

t = t / i; s = s + t; i = i + 1;

}



Computing the value of e (contd.)
Our suggested strategy: First observe what you do manually

I (Manual) computation has n − 1 phases.
I In ith phase, you calculate the value of 1

i!

Value calculated in ith phase = value in i − 1 th phase
i .

I At this point you might realize it is better to give names,
ti = term calculated in ith iteration.
si = sum calculated in ith iteration.

I Above observation: ti = ti−1/i . Also si = si−1 + ti
Different from pseudocode/flowchat: si , ti are names of values.

“Next write the program”
I n − 1 phases −→ loop that runs n − 1 times
I Use variables s,t to store the values si , ti .

double s=1, t=1; int i=1, n; cin >> n;

repeat(n-1){

t = t / i; s = s + t; i = i + 1;

}



Computing the value of e (contd.)
Our suggested strategy: First observe what you do manually

I (Manual) computation has n − 1 phases.
I In ith phase, you calculate the value of 1

i!

Value calculated in ith phase = value in i − 1 th phase
i .

I At this point you might realize it is better to give names,
ti = term calculated in ith iteration.
si = sum calculated in ith iteration.

I Above observation: ti = ti−1/i . Also si = si−1 + ti
Different from pseudocode/flowchat: si , ti are names of values.

“Next write the program”
I n − 1 phases −→ loop that runs n − 1 times
I Use variables s,t to store the values si , ti .

double s=1, t=1; int i=1, n; cin >> n;

repeat(n-1){

t = t / i; s = s + t; i = i + 1;

}



Remarks

I Encourage students to write precise comments:
“At the beginning of ith iteration
s will hold si−1 = 1

0! + . . . , 1
i−1!

t will hold ti−1 = 1
i−1!”

Invariants..

I Program design can be overwhelming if you have too many
choices.

“I know all statements, but I dont know which to select!”
Knowing too many, very complex statements is confusing.

while, for are confusing to novices.
if is also taught before while, for.

I When we teach program design:
students know repeat + assignment.

Fewer choices, less confusion.



Remarks

I Encourage students to write precise comments:

“At the beginning of ith iteration
s will hold si−1 = 1

0! + . . . , 1
i−1!

t will hold ti−1 = 1
i−1!”

Invariants..

I Program design can be overwhelming if you have too many
choices.

“I know all statements, but I dont know which to select!”
Knowing too many, very complex statements is confusing.

while, for are confusing to novices.
if is also taught before while, for.

I When we teach program design:
students know repeat + assignment.

Fewer choices, less confusion.



Remarks

I Encourage students to write precise comments:
“At the beginning of ith iteration

s will hold si−1 = 1
0! + . . . , 1

i−1!

t will hold ti−1 = 1
i−1!”

Invariants..

I Program design can be overwhelming if you have too many
choices.

“I know all statements, but I dont know which to select!”
Knowing too many, very complex statements is confusing.

while, for are confusing to novices.
if is also taught before while, for.

I When we teach program design:
students know repeat + assignment.

Fewer choices, less confusion.



Remarks

I Encourage students to write precise comments:
“At the beginning of ith iteration
s will hold si−1 = 1

0! + . . . , 1
i−1!

t will hold ti−1 = 1
i−1!”

Invariants..

I Program design can be overwhelming if you have too many
choices.

“I know all statements, but I dont know which to select!”
Knowing too many, very complex statements is confusing.

while, for are confusing to novices.
if is also taught before while, for.

I When we teach program design:
students know repeat + assignment.

Fewer choices, less confusion.



Remarks

I Encourage students to write precise comments:
“At the beginning of ith iteration
s will hold si−1 = 1

0! + . . . , 1
i−1!

t will hold ti−1 = 1
i−1!”

Invariants..

I Program design can be overwhelming if you have too many
choices.

“I know all statements, but I dont know which to select!”
Knowing too many, very complex statements is confusing.

while, for are confusing to novices.
if is also taught before while, for.

I When we teach program design:
students know repeat + assignment.

Fewer choices, less confusion.



Remarks

I Encourage students to write precise comments:
“At the beginning of ith iteration
s will hold si−1 = 1

0! + . . . , 1
i−1!

t will hold ti−1 = 1
i−1!”

Invariants..

I Program design can be overwhelming if you have too many
choices.

“I know all statements, but I dont know which to select!”
Knowing too many, very complex statements is confusing.

while, for are confusing to novices.
if is also taught before while, for.

I When we teach program design:
students know repeat + assignment.

Fewer choices, less confusion.



Remarks

I Encourage students to write precise comments:
“At the beginning of ith iteration
s will hold si−1 = 1

0! + . . . , 1
i−1!

t will hold ti−1 = 1
i−1!”

Invariants..

I Program design can be overwhelming if you have too many
choices.

“I know all statements, but I dont know which to select!”
Knowing too many, very complex statements is confusing.

while, for are confusing to novices.
if is also taught before while, for.

I When we teach program design:
students know repeat + assignment.

Fewer choices, less confusion.



Remarks

I Encourage students to write precise comments:
“At the beginning of ith iteration
s will hold si−1 = 1

0! + . . . , 1
i−1!

t will hold ti−1 = 1
i−1!”

Invariants..

I Program design can be overwhelming if you have too many
choices.

“I know all statements, but I dont know which to select!”

Knowing too many, very complex statements is confusing.
while, for are confusing to novices.
if is also taught before while, for.

I When we teach program design:
students know repeat + assignment.

Fewer choices, less confusion.



Remarks

I Encourage students to write precise comments:
“At the beginning of ith iteration
s will hold si−1 = 1

0! + . . . , 1
i−1!

t will hold ti−1 = 1
i−1!”

Invariants..

I Program design can be overwhelming if you have too many
choices.

“I know all statements, but I dont know which to select!”
Knowing too many, very complex statements is confusing.

while, for are confusing to novices.
if is also taught before while, for.

I When we teach program design:
students know repeat + assignment.

Fewer choices, less confusion.



Remarks

I Encourage students to write precise comments:
“At the beginning of ith iteration
s will hold si−1 = 1

0! + . . . , 1
i−1!

t will hold ti−1 = 1
i−1!”

Invariants..

I Program design can be overwhelming if you have too many
choices.

“I know all statements, but I dont know which to select!”
Knowing too many, very complex statements is confusing.

while, for are confusing to novices.

if is also taught before while, for.

I When we teach program design:
students know repeat + assignment.

Fewer choices, less confusion.



Remarks

I Encourage students to write precise comments:
“At the beginning of ith iteration
s will hold si−1 = 1

0! + . . . , 1
i−1!

t will hold ti−1 = 1
i−1!”

Invariants..

I Program design can be overwhelming if you have too many
choices.

“I know all statements, but I dont know which to select!”
Knowing too many, very complex statements is confusing.

while, for are confusing to novices.
if is also taught before while, for.

I When we teach program design:
students know repeat + assignment.

Fewer choices, less confusion.



Remarks

I Encourage students to write precise comments:
“At the beginning of ith iteration
s will hold si−1 = 1

0! + . . . , 1
i−1!

t will hold ti−1 = 1
i−1!”

Invariants..

I Program design can be overwhelming if you have too many
choices.

“I know all statements, but I dont know which to select!”
Knowing too many, very complex statements is confusing.

while, for are confusing to novices.
if is also taught before while, for.

I When we teach program design:

students know repeat + assignment.
Fewer choices, less confusion.



Remarks

I Encourage students to write precise comments:
“At the beginning of ith iteration
s will hold si−1 = 1

0! + . . . , 1
i−1!

t will hold ti−1 = 1
i−1!”

Invariants..

I Program design can be overwhelming if you have too many
choices.

“I know all statements, but I dont know which to select!”
Knowing too many, very complex statements is confusing.

while, for are confusing to novices.
if is also taught before while, for.

I When we teach program design:
students know repeat + assignment.

Fewer choices, less confusion.



Remarks

I Encourage students to write precise comments:
“At the beginning of ith iteration
s will hold si−1 = 1

0! + . . . , 1
i−1!

t will hold ti−1 = 1
i−1!”

Invariants..

I Program design can be overwhelming if you have too many
choices.

“I know all statements, but I dont know which to select!”
Knowing too many, very complex statements is confusing.

while, for are confusing to novices.
if is also taught before while, for.

I When we teach program design:
students know repeat + assignment.

Fewer choices, less confusion.



Other revealing example of manual vs. computer
computation

I Remove extra spaces from a line of text.

I Given a 2d array of bits, count number of objects (group of
contiguous 1s)

I Determining whether a sequence of parentheses is balanced.

I Place 8 queens on a chessboard so that no queen captures
another.



Other revealing example of manual vs. computer
computation

I Remove extra spaces from a line of text.

I Given a 2d array of bits, count number of objects (group of
contiguous 1s)

I Determining whether a sequence of parentheses is balanced.

I Place 8 queens on a chessboard so that no queen captures
another.



Other revealing example of manual vs. computer
computation

I Remove extra spaces from a line of text.

I Given a 2d array of bits, count number of objects (group of
contiguous 1s)

I Determining whether a sequence of parentheses is balanced.

I Place 8 queens on a chessboard so that no queen captures
another.



Other revealing example of manual vs. computer
computation

I Remove extra spaces from a line of text.

I Given a 2d array of bits, count number of objects (group of
contiguous 1s)

I Determining whether a sequence of parentheses is balanced.

I Place 8 queens on a chessboard so that no queen captures
another.



Other revealing example of manual vs. computer
computation

I Remove extra spaces from a line of text.

I Given a 2d array of bits, count number of objects (group of
contiguous 1s)

I Determining whether a sequence of parentheses is balanced.

I Place 8 queens on a chessboard so that no queen captures
another.



Teaching difficult topics



Difficult topic: Recursion

With graphics: pictorial recursion

Tree = trunk + two small trees

void tree(int levels){

if(levels > 0){

forward(levels*25); // trunk

left(15);

tree(levels-1); // first small tree

right(30);

tree(levels-1); // second small tree

left(15);

forward(-levels*25);

}

}



Difficult topic: Recursion

With graphics: pictorial recursion

Tree = trunk + two small trees

void tree(int levels){

if(levels > 0){

forward(levels*25); // trunk

left(15);

tree(levels-1); // first small tree

right(30);

tree(levels-1); // second small tree

left(15);

forward(-levels*25);

}

}



Difficult topic: Recursion

With graphics: pictorial recursion

Tree = trunk + two small trees

void tree(int levels){

if(levels > 0){

forward(levels*25); // trunk

left(15);

tree(levels-1); // first small tree

right(30);

tree(levels-1); // second small tree

left(15);

forward(-levels*25);

}

}



Difficult topic: Inheritance

How to construct good motivating examples?
Simplecpp provides Composite class for creating composite objects

class Wheel : public Composite{

Circle *rim;

Line *spoke[10];

public:

Wheel(double x, double y, Composite* owner=NULL) :

Composite(x,y,owner){

rim = new Circle(0,0,RADIUS,this);

for(int i=0; i<10; i++){

spoke[i] = new Line(0, 0, RADIUS*cos(i*PI/5),

RADIUS*sin(i*PI/5), this);

}

}

};

Wheels can be created, moved, rotated, just like ordinary graphics
objects



Difficult topic: Inheritance
How to construct good motivating examples?

Simplecpp provides Composite class for creating composite objects

class Wheel : public Composite{

Circle *rim;

Line *spoke[10];

public:

Wheel(double x, double y, Composite* owner=NULL) :

Composite(x,y,owner){

rim = new Circle(0,0,RADIUS,this);

for(int i=0; i<10; i++){

spoke[i] = new Line(0, 0, RADIUS*cos(i*PI/5),

RADIUS*sin(i*PI/5), this);

}

}

};

Wheels can be created, moved, rotated, just like ordinary graphics
objects



Difficult topic: Inheritance
How to construct good motivating examples?
Simplecpp provides Composite class for creating composite objects

class Wheel : public Composite{

Circle *rim;

Line *spoke[10];

public:

Wheel(double x, double y, Composite* owner=NULL) :

Composite(x,y,owner){

rim = new Circle(0,0,RADIUS,this);

for(int i=0; i<10; i++){

spoke[i] = new Line(0, 0, RADIUS*cos(i*PI/5),

RADIUS*sin(i*PI/5), this);

}

}

};

Wheels can be created, moved, rotated, just like ordinary graphics
objects



Difficult topic: Inheritance
How to construct good motivating examples?
Simplecpp provides Composite class for creating composite objects

class Wheel : public Composite{

Circle *rim;

Line *spoke[10];

public:

Wheel(double x, double y, Composite* owner=NULL) :

Composite(x,y,owner){

rim = new Circle(0,0,RADIUS,this);

for(int i=0; i<10; i++){

spoke[i] = new Line(0, 0, RADIUS*cos(i*PI/5),

RADIUS*sin(i*PI/5), this);

}

}

};

Wheels can be created, moved, rotated, just like ordinary graphics
objects



Difficult topic: Inheritance
How to construct good motivating examples?
Simplecpp provides Composite class for creating composite objects

class Wheel : public Composite{

Circle *rim;

Line *spoke[10];

public:

Wheel(double x, double y, Composite* owner=NULL) :

Composite(x,y,owner){

rim = new Circle(0,0,RADIUS,this);

for(int i=0; i<10; i++){

spoke[i] = new Line(0, 0, RADIUS*cos(i*PI/5),

RADIUS*sin(i*PI/5), this);

}

}

};

Wheels can be created, moved, rotated, just like ordinary graphics
objects



Our approach has been documented and tested!

Available in bookstores
Available on-line



Key features

I Develops and presents the teaching approach described so far.

I Substantial programming exercises

I Project ideas

I Advanced topics in programming, numerical and graph
algorithms,...

Book vs. MOOC?

I Labs, homeworks need handholding.

I There has to be a knowledgeable teacher locally.

I Book is an invaluable safety net for weak students.

I Also provides challenge material to bright students.

Book + MOOC!



Key features

I Develops and presents the teaching approach described so far.

I Substantial programming exercises

I Project ideas

I Advanced topics in programming, numerical and graph
algorithms,...

Book vs. MOOC?

I Labs, homeworks need handholding.

I There has to be a knowledgeable teacher locally.

I Book is an invaluable safety net for weak students.

I Also provides challenge material to bright students.

Book + MOOC!



Key features

I Develops and presents the teaching approach described so far.

I Substantial programming exercises

I Project ideas

I Advanced topics in programming, numerical and graph
algorithms,...

Book vs. MOOC?

I Labs, homeworks need handholding.

I There has to be a knowledgeable teacher locally.

I Book is an invaluable safety net for weak students.

I Also provides challenge material to bright students.

Book + MOOC!



Key features

I Develops and presents the teaching approach described so far.

I Substantial programming exercises

I Project ideas

I Advanced topics in programming, numerical and graph
algorithms,...

Book vs. MOOC?

I Labs, homeworks need handholding.

I There has to be a knowledgeable teacher locally.

I Book is an invaluable safety net for weak students.

I Also provides challenge material to bright students.

Book + MOOC!



Key features

I Develops and presents the teaching approach described so far.

I Substantial programming exercises

I Project ideas

I Advanced topics in programming, numerical and graph
algorithms,...

Book vs. MOOC?

I Labs, homeworks need handholding.

I There has to be a knowledgeable teacher locally.

I Book is an invaluable safety net for weak students.

I Also provides challenge material to bright students.

Book + MOOC!



Key features

I Develops and presents the teaching approach described so far.

I Substantial programming exercises

I Project ideas

I Advanced topics in programming, numerical and graph
algorithms,...

Book vs. MOOC?

I Labs, homeworks need handholding.

I There has to be a knowledgeable teacher locally.

I Book is an invaluable safety net for weak students.

I Also provides challenge material to bright students.

Book + MOOC!



Key features

I Develops and presents the teaching approach described so far.

I Substantial programming exercises

I Project ideas

I Advanced topics in programming, numerical and graph
algorithms,...

Book vs. MOOC?

I Labs, homeworks need handholding.

I There has to be a knowledgeable teacher locally.

I Book is an invaluable safety net for weak students.

I Also provides challenge material to bright students.

Book + MOOC!



Key features

I Develops and presents the teaching approach described so far.

I Substantial programming exercises

I Project ideas

I Advanced topics in programming, numerical and graph
algorithms,...

Book vs. MOOC?

I Labs, homeworks need handholding.

I There has to be a knowledgeable teacher locally.

I Book is an invaluable safety net for weak students.

I Also provides challenge material to bright students.

Book + MOOC!



Key features

I Develops and presents the teaching approach described so far.

I Substantial programming exercises

I Project ideas

I Advanced topics in programming, numerical and graph
algorithms,...

Book vs. MOOC?

I Labs, homeworks need handholding.

I There has to be a knowledgeable teacher locally.

I Book is an invaluable safety net for weak students.

I Also provides challenge material to bright students.

Book + MOOC!



Key features

I Develops and presents the teaching approach described so far.

I Substantial programming exercises

I Project ideas

I Advanced topics in programming, numerical and graph
algorithms,...

Book vs. MOOC?

I Labs, homeworks need handholding.

I There has to be a knowledgeable teacher locally.

I Book is an invaluable safety net for weak students.

I Also provides challenge material to bright students.

Book + MOOC!



Key features

I Develops and presents the teaching approach described so far.

I Substantial programming exercises

I Project ideas

I Advanced topics in programming, numerical and graph
algorithms,...

Book vs. MOOC?

I Labs, homeworks need handholding.

I There has to be a knowledgeable teacher locally.

I Book is an invaluable safety net for weak students.

I Also provides challenge material to bright students.

Book + MOOC!



Experience

I Used in the introductory programming course at IITB during
development and after publication.

I Used in an IITB-EdX MOOC taught by Prof. D. B. Phatak
and Prof. S. Chakraborty of IITB.

I Currently used in the introductory programming course at
I IIT Bombay, IIT Goa, IIT Dharwad
I Vishwakarma Institute of Technology, Pune
I Department of Computer Science, Goa University.

I NPTEL course on “Design and Pedogy of the Introductory
Programming Course”.

I Students have used simplecpp graphics to do many exciting
projects: games, puzzles, graphical editors, ...

I Simplecpp: available as library for unix, and embedded in an
IDE for Windows/unix. Search the net.

I Chapterwise slides available to instructors.
Contact McGraw Hill representative.



Experience

I Used in the introductory programming course at IITB during
development and after publication.

I Used in an IITB-EdX MOOC taught by Prof. D. B. Phatak
and Prof. S. Chakraborty of IITB.

I Currently used in the introductory programming course at
I IIT Bombay, IIT Goa, IIT Dharwad
I Vishwakarma Institute of Technology, Pune
I Department of Computer Science, Goa University.

I NPTEL course on “Design and Pedogy of the Introductory
Programming Course”.

I Students have used simplecpp graphics to do many exciting
projects: games, puzzles, graphical editors, ...

I Simplecpp: available as library for unix, and embedded in an
IDE for Windows/unix. Search the net.

I Chapterwise slides available to instructors.
Contact McGraw Hill representative.



Experience

I Used in the introductory programming course at IITB during
development and after publication.

I Used in an IITB-EdX MOOC taught by Prof. D. B. Phatak
and Prof. S. Chakraborty of IITB.

I Currently used in the introductory programming course at
I IIT Bombay, IIT Goa, IIT Dharwad
I Vishwakarma Institute of Technology, Pune
I Department of Computer Science, Goa University.

I NPTEL course on “Design and Pedogy of the Introductory
Programming Course”.

I Students have used simplecpp graphics to do many exciting
projects: games, puzzles, graphical editors, ...

I Simplecpp: available as library for unix, and embedded in an
IDE for Windows/unix. Search the net.

I Chapterwise slides available to instructors.
Contact McGraw Hill representative.



Experience

I Used in the introductory programming course at IITB during
development and after publication.

I Used in an IITB-EdX MOOC taught by Prof. D. B. Phatak
and Prof. S. Chakraborty of IITB.

I Currently used in the introductory programming course at

I IIT Bombay, IIT Goa, IIT Dharwad
I Vishwakarma Institute of Technology, Pune
I Department of Computer Science, Goa University.

I NPTEL course on “Design and Pedogy of the Introductory
Programming Course”.

I Students have used simplecpp graphics to do many exciting
projects: games, puzzles, graphical editors, ...

I Simplecpp: available as library for unix, and embedded in an
IDE for Windows/unix. Search the net.

I Chapterwise slides available to instructors.
Contact McGraw Hill representative.



Experience

I Used in the introductory programming course at IITB during
development and after publication.

I Used in an IITB-EdX MOOC taught by Prof. D. B. Phatak
and Prof. S. Chakraborty of IITB.

I Currently used in the introductory programming course at
I IIT Bombay, IIT Goa, IIT Dharwad

I Vishwakarma Institute of Technology, Pune
I Department of Computer Science, Goa University.

I NPTEL course on “Design and Pedogy of the Introductory
Programming Course”.

I Students have used simplecpp graphics to do many exciting
projects: games, puzzles, graphical editors, ...

I Simplecpp: available as library for unix, and embedded in an
IDE for Windows/unix. Search the net.

I Chapterwise slides available to instructors.
Contact McGraw Hill representative.



Experience

I Used in the introductory programming course at IITB during
development and after publication.

I Used in an IITB-EdX MOOC taught by Prof. D. B. Phatak
and Prof. S. Chakraborty of IITB.

I Currently used in the introductory programming course at
I IIT Bombay, IIT Goa, IIT Dharwad
I Vishwakarma Institute of Technology, Pune

I Department of Computer Science, Goa University.

I NPTEL course on “Design and Pedogy of the Introductory
Programming Course”.

I Students have used simplecpp graphics to do many exciting
projects: games, puzzles, graphical editors, ...

I Simplecpp: available as library for unix, and embedded in an
IDE for Windows/unix. Search the net.

I Chapterwise slides available to instructors.
Contact McGraw Hill representative.



Experience

I Used in the introductory programming course at IITB during
development and after publication.

I Used in an IITB-EdX MOOC taught by Prof. D. B. Phatak
and Prof. S. Chakraborty of IITB.

I Currently used in the introductory programming course at
I IIT Bombay, IIT Goa, IIT Dharwad
I Vishwakarma Institute of Technology, Pune
I Department of Computer Science, Goa University.

I NPTEL course on “Design and Pedogy of the Introductory
Programming Course”.

I Students have used simplecpp graphics to do many exciting
projects: games, puzzles, graphical editors, ...

I Simplecpp: available as library for unix, and embedded in an
IDE for Windows/unix. Search the net.

I Chapterwise slides available to instructors.
Contact McGraw Hill representative.



Experience

I Used in the introductory programming course at IITB during
development and after publication.

I Used in an IITB-EdX MOOC taught by Prof. D. B. Phatak
and Prof. S. Chakraborty of IITB.

I Currently used in the introductory programming course at
I IIT Bombay, IIT Goa, IIT Dharwad
I Vishwakarma Institute of Technology, Pune
I Department of Computer Science, Goa University.

I NPTEL course on “Design and Pedogy of the Introductory
Programming Course”.

I Students have used simplecpp graphics to do many exciting
projects: games, puzzles, graphical editors, ...

I Simplecpp: available as library for unix, and embedded in an
IDE for Windows/unix. Search the net.

I Chapterwise slides available to instructors.
Contact McGraw Hill representative.



Experience

I Used in the introductory programming course at IITB during
development and after publication.

I Used in an IITB-EdX MOOC taught by Prof. D. B. Phatak
and Prof. S. Chakraborty of IITB.

I Currently used in the introductory programming course at
I IIT Bombay, IIT Goa, IIT Dharwad
I Vishwakarma Institute of Technology, Pune
I Department of Computer Science, Goa University.

I NPTEL course on “Design and Pedogy of the Introductory
Programming Course”.

I Students have used simplecpp graphics to do many exciting
projects: games, puzzles, graphical editors, ...

I Simplecpp: available as library for unix, and embedded in an
IDE for Windows/unix. Search the net.

I Chapterwise slides available to instructors.
Contact McGraw Hill representative.



Experience

I Used in the introductory programming course at IITB during
development and after publication.

I Used in an IITB-EdX MOOC taught by Prof. D. B. Phatak
and Prof. S. Chakraborty of IITB.

I Currently used in the introductory programming course at
I IIT Bombay, IIT Goa, IIT Dharwad
I Vishwakarma Institute of Technology, Pune
I Department of Computer Science, Goa University.

I NPTEL course on “Design and Pedogy of the Introductory
Programming Course”.

I Students have used simplecpp graphics to do many exciting
projects: games, puzzles, graphical editors, ...

I Simplecpp: available as library for unix, and embedded in an
IDE for Windows/unix. Search the net.

I Chapterwise slides available to instructors.
Contact McGraw Hill representative.



Experience

I Used in the introductory programming course at IITB during
development and after publication.

I Used in an IITB-EdX MOOC taught by Prof. D. B. Phatak
and Prof. S. Chakraborty of IITB.

I Currently used in the introductory programming course at
I IIT Bombay, IIT Goa, IIT Dharwad
I Vishwakarma Institute of Technology, Pune
I Department of Computer Science, Goa University.

I NPTEL course on “Design and Pedogy of the Introductory
Programming Course”.

I Students have used simplecpp graphics to do many exciting
projects: games, puzzles, graphical editors, ...

I Simplecpp: available as library for unix, and embedded in an
IDE for Windows/unix. Search the net.

I Chapterwise slides available to instructors.
Contact McGraw Hill representative.



Summary: Introductory programming

I Our students already know algorithms.
We help them translate what they know into programs.

I Must write many small programs and a few large programs.
Programming can be understood only through practice.

Programs must do interesting things.

I Graphics helps in grabbing student attention,
Useful to explain concepts.

Graphical input/output is useful in science and technology.

I repeat statement is understandable on day 1.
Speeds up learning.

Good first step towards standard looping statements.



Summary: Introductory programming

I Our students already know algorithms.

We help them translate what they know into programs.

I Must write many small programs and a few large programs.
Programming can be understood only through practice.

Programs must do interesting things.

I Graphics helps in grabbing student attention,
Useful to explain concepts.

Graphical input/output is useful in science and technology.

I repeat statement is understandable on day 1.
Speeds up learning.

Good first step towards standard looping statements.



Summary: Introductory programming

I Our students already know algorithms.
We help them translate what they know into programs.

I Must write many small programs and a few large programs.
Programming can be understood only through practice.

Programs must do interesting things.

I Graphics helps in grabbing student attention,
Useful to explain concepts.

Graphical input/output is useful in science and technology.

I repeat statement is understandable on day 1.
Speeds up learning.

Good first step towards standard looping statements.



Summary: Introductory programming

I Our students already know algorithms.
We help them translate what they know into programs.

I Must write many small programs and a few large programs.

Programming can be understood only through practice.
Programs must do interesting things.

I Graphics helps in grabbing student attention,
Useful to explain concepts.

Graphical input/output is useful in science and technology.

I repeat statement is understandable on day 1.
Speeds up learning.

Good first step towards standard looping statements.



Summary: Introductory programming

I Our students already know algorithms.
We help them translate what they know into programs.

I Must write many small programs and a few large programs.
Programming can be understood only through practice.

Programs must do interesting things.

I Graphics helps in grabbing student attention,
Useful to explain concepts.

Graphical input/output is useful in science and technology.

I repeat statement is understandable on day 1.
Speeds up learning.

Good first step towards standard looping statements.



Summary: Introductory programming

I Our students already know algorithms.
We help them translate what they know into programs.

I Must write many small programs and a few large programs.
Programming can be understood only through practice.

Programs must do interesting things.

I Graphics helps in grabbing student attention,
Useful to explain concepts.

Graphical input/output is useful in science and technology.

I repeat statement is understandable on day 1.
Speeds up learning.

Good first step towards standard looping statements.



Summary: Introductory programming

I Our students already know algorithms.
We help them translate what they know into programs.

I Must write many small programs and a few large programs.
Programming can be understood only through practice.

Programs must do interesting things.

I Graphics helps in grabbing student attention,

Useful to explain concepts.
Graphical input/output is useful in science and technology.

I repeat statement is understandable on day 1.
Speeds up learning.

Good first step towards standard looping statements.



Summary: Introductory programming

I Our students already know algorithms.
We help them translate what they know into programs.

I Must write many small programs and a few large programs.
Programming can be understood only through practice.

Programs must do interesting things.

I Graphics helps in grabbing student attention,
Useful to explain concepts.

Graphical input/output is useful in science and technology.

I repeat statement is understandable on day 1.
Speeds up learning.

Good first step towards standard looping statements.



Summary: Introductory programming

I Our students already know algorithms.
We help them translate what they know into programs.

I Must write many small programs and a few large programs.
Programming can be understood only through practice.

Programs must do interesting things.

I Graphics helps in grabbing student attention,
Useful to explain concepts.

Graphical input/output is useful in science and technology.

I repeat statement is understandable on day 1.
Speeds up learning.

Good first step towards standard looping statements.



Summary: Introductory programming

I Our students already know algorithms.
We help them translate what they know into programs.

I Must write many small programs and a few large programs.
Programming can be understood only through practice.

Programs must do interesting things.

I Graphics helps in grabbing student attention,
Useful to explain concepts.

Graphical input/output is useful in science and technology.

I repeat statement is understandable on day 1.

Speeds up learning.
Good first step towards standard looping statements.



Summary: Introductory programming

I Our students already know algorithms.
We help them translate what they know into programs.

I Must write many small programs and a few large programs.
Programming can be understood only through practice.

Programs must do interesting things.

I Graphics helps in grabbing student attention,
Useful to explain concepts.

Graphical input/output is useful in science and technology.

I repeat statement is understandable on day 1.
Speeds up learning.

Good first step towards standard looping statements.



Summary: Introductory programming

I Our students already know algorithms.
We help them translate what they know into programs.

I Must write many small programs and a few large programs.
Programming can be understood only through practice.

Programs must do interesting things.

I Graphics helps in grabbing student attention,
Useful to explain concepts.

Graphical input/output is useful in science and technology.

I repeat statement is understandable on day 1.
Speeds up learning.

Good first step towards standard looping statements.



Summary: Course design of specially selected courses

I Course designs should be more detailed
I Specify the bottom line in a layman’s language.

“What great things can I do at the end”
I Course goals should take clear position on important issues.

How much algorithm design/hardware/software engg? ...
I Educational research literature should be consulted

“Standard difficulties”? How to overcome?
I Course designers should suggest pedagogy

How to convey spirit, exams, ...

I Course design should be a well-paid consultancy project?
Expect professionalism but not altruism.

I Regulatory bodies should monitor, ask compliance?
Strong medicine, but only for chosen courses.

I Nation-wide electronic discussion forum for teachers?



Summary: Course design of specially selected courses

I Course designs should be more detailed

I Specify the bottom line in a layman’s language.
“What great things can I do at the end”

I Course goals should take clear position on important issues.
How much algorithm design/hardware/software engg? ...

I Educational research literature should be consulted
“Standard difficulties”? How to overcome?

I Course designers should suggest pedagogy
How to convey spirit, exams, ...

I Course design should be a well-paid consultancy project?
Expect professionalism but not altruism.

I Regulatory bodies should monitor, ask compliance?
Strong medicine, but only for chosen courses.

I Nation-wide electronic discussion forum for teachers?



Summary: Course design of specially selected courses

I Course designs should be more detailed
I Specify the bottom line in a layman’s language.

“What great things can I do at the end”
I Course goals should take clear position on important issues.

How much algorithm design/hardware/software engg? ...
I Educational research literature should be consulted

“Standard difficulties”? How to overcome?
I Course designers should suggest pedagogy

How to convey spirit, exams, ...

I Course design should be a well-paid consultancy project?
Expect professionalism but not altruism.

I Regulatory bodies should monitor, ask compliance?
Strong medicine, but only for chosen courses.

I Nation-wide electronic discussion forum for teachers?



Summary: Course design of specially selected courses

I Course designs should be more detailed
I Specify the bottom line in a layman’s language.

“What great things can I do at the end”

I Course goals should take clear position on important issues.
How much algorithm design/hardware/software engg? ...

I Educational research literature should be consulted
“Standard difficulties”? How to overcome?

I Course designers should suggest pedagogy
How to convey spirit, exams, ...

I Course design should be a well-paid consultancy project?
Expect professionalism but not altruism.

I Regulatory bodies should monitor, ask compliance?
Strong medicine, but only for chosen courses.

I Nation-wide electronic discussion forum for teachers?



Summary: Course design of specially selected courses

I Course designs should be more detailed
I Specify the bottom line in a layman’s language.

“What great things can I do at the end”
I Course goals should take clear position on important issues.

How much algorithm design/hardware/software engg? ...
I Educational research literature should be consulted

“Standard difficulties”? How to overcome?
I Course designers should suggest pedagogy

How to convey spirit, exams, ...

I Course design should be a well-paid consultancy project?
Expect professionalism but not altruism.

I Regulatory bodies should monitor, ask compliance?
Strong medicine, but only for chosen courses.

I Nation-wide electronic discussion forum for teachers?



Summary: Course design of specially selected courses

I Course designs should be more detailed
I Specify the bottom line in a layman’s language.

“What great things can I do at the end”
I Course goals should take clear position on important issues.

How much algorithm design/hardware/software engg? ...

I Educational research literature should be consulted
“Standard difficulties”? How to overcome?

I Course designers should suggest pedagogy
How to convey spirit, exams, ...

I Course design should be a well-paid consultancy project?
Expect professionalism but not altruism.

I Regulatory bodies should monitor, ask compliance?
Strong medicine, but only for chosen courses.

I Nation-wide electronic discussion forum for teachers?



Summary: Course design of specially selected courses

I Course designs should be more detailed
I Specify the bottom line in a layman’s language.

“What great things can I do at the end”
I Course goals should take clear position on important issues.

How much algorithm design/hardware/software engg? ...
I Educational research literature should be consulted

“Standard difficulties”? How to overcome?
I Course designers should suggest pedagogy

How to convey spirit, exams, ...

I Course design should be a well-paid consultancy project?
Expect professionalism but not altruism.

I Regulatory bodies should monitor, ask compliance?
Strong medicine, but only for chosen courses.

I Nation-wide electronic discussion forum for teachers?



Summary: Course design of specially selected courses

I Course designs should be more detailed
I Specify the bottom line in a layman’s language.

“What great things can I do at the end”
I Course goals should take clear position on important issues.

How much algorithm design/hardware/software engg? ...
I Educational research literature should be consulted

“Standard difficulties”? How to overcome?

I Course designers should suggest pedagogy
How to convey spirit, exams, ...

I Course design should be a well-paid consultancy project?
Expect professionalism but not altruism.

I Regulatory bodies should monitor, ask compliance?
Strong medicine, but only for chosen courses.

I Nation-wide electronic discussion forum for teachers?



Summary: Course design of specially selected courses

I Course designs should be more detailed
I Specify the bottom line in a layman’s language.

“What great things can I do at the end”
I Course goals should take clear position on important issues.

How much algorithm design/hardware/software engg? ...
I Educational research literature should be consulted

“Standard difficulties”? How to overcome?
I Course designers should suggest pedagogy

How to convey spirit, exams, ...

I Course design should be a well-paid consultancy project?
Expect professionalism but not altruism.

I Regulatory bodies should monitor, ask compliance?
Strong medicine, but only for chosen courses.

I Nation-wide electronic discussion forum for teachers?



Summary: Course design of specially selected courses

I Course designs should be more detailed
I Specify the bottom line in a layman’s language.

“What great things can I do at the end”
I Course goals should take clear position on important issues.

How much algorithm design/hardware/software engg? ...
I Educational research literature should be consulted

“Standard difficulties”? How to overcome?
I Course designers should suggest pedagogy

How to convey spirit, exams, ...

I Course design should be a well-paid consultancy project?
Expect professionalism but not altruism.

I Regulatory bodies should monitor, ask compliance?
Strong medicine, but only for chosen courses.

I Nation-wide electronic discussion forum for teachers?



Summary: Course design of specially selected courses

I Course designs should be more detailed
I Specify the bottom line in a layman’s language.

“What great things can I do at the end”
I Course goals should take clear position on important issues.

How much algorithm design/hardware/software engg? ...
I Educational research literature should be consulted

“Standard difficulties”? How to overcome?
I Course designers should suggest pedagogy

How to convey spirit, exams, ...

I Course design should be a well-paid consultancy project?

Expect professionalism but not altruism.

I Regulatory bodies should monitor, ask compliance?
Strong medicine, but only for chosen courses.

I Nation-wide electronic discussion forum for teachers?



Summary: Course design of specially selected courses

I Course designs should be more detailed
I Specify the bottom line in a layman’s language.

“What great things can I do at the end”
I Course goals should take clear position on important issues.

How much algorithm design/hardware/software engg? ...
I Educational research literature should be consulted

“Standard difficulties”? How to overcome?
I Course designers should suggest pedagogy

How to convey spirit, exams, ...

I Course design should be a well-paid consultancy project?
Expect professionalism but not altruism.

I Regulatory bodies should monitor, ask compliance?
Strong medicine, but only for chosen courses.

I Nation-wide electronic discussion forum for teachers?



Summary: Course design of specially selected courses

I Course designs should be more detailed
I Specify the bottom line in a layman’s language.

“What great things can I do at the end”
I Course goals should take clear position on important issues.

How much algorithm design/hardware/software engg? ...
I Educational research literature should be consulted

“Standard difficulties”? How to overcome?
I Course designers should suggest pedagogy

How to convey spirit, exams, ...

I Course design should be a well-paid consultancy project?
Expect professionalism but not altruism.

I Regulatory bodies should monitor, ask compliance?

Strong medicine, but only for chosen courses.

I Nation-wide electronic discussion forum for teachers?



Summary: Course design of specially selected courses

I Course designs should be more detailed
I Specify the bottom line in a layman’s language.

“What great things can I do at the end”
I Course goals should take clear position on important issues.

How much algorithm design/hardware/software engg? ...
I Educational research literature should be consulted

“Standard difficulties”? How to overcome?
I Course designers should suggest pedagogy

How to convey spirit, exams, ...

I Course design should be a well-paid consultancy project?
Expect professionalism but not altruism.

I Regulatory bodies should monitor, ask compliance?
Strong medicine, but only for chosen courses.

I Nation-wide electronic discussion forum for teachers?



Summary: Course design of specially selected courses

I Course designs should be more detailed
I Specify the bottom line in a layman’s language.

“What great things can I do at the end”
I Course goals should take clear position on important issues.

How much algorithm design/hardware/software engg? ...
I Educational research literature should be consulted

“Standard difficulties”? How to overcome?
I Course designers should suggest pedagogy

How to convey spirit, exams, ...

I Course design should be a well-paid consultancy project?
Expect professionalism but not altruism.

I Regulatory bodies should monitor, ask compliance?
Strong medicine, but only for chosen courses.

I Nation-wide electronic discussion forum for teachers?



N. Alzahrani, F. Vahid, A. Edgcomb, K. Nguyen, and
R. Lysecky, Python versus c++: An analysis of student
struggle on small coding exercises in introductory
programming courses, Proceedings of the 2018 ACM SIGCSE
Technical Symposium on Computer Science Education (New
York, NY, USA), SIGCSE ’18, ACM, 2018, pp. 86–91.

Jens Bennedsen and Michael E. Caspersen, Failure rates in
introductory programming, SIGCSE Bull. 39 (2007), no. 2,
32–36.

M. Guzdial, Is learning to program inherently hard?, April
2010, Retrieved from:
https://computinged.wordpress.com/2010/04/14/is-learning-
to-program-inherently-hard/.

Andrew Luxton-Reilly, Learning to program is easy,
Proceedings of the 2016 ACM Conference on Innovation and
Technology in Computer Science Education, ITiCSE ’16,
ACM, 2016, pp. 284–289.



Leon E. Winslow, Programming pedagogy – a psychological
overview, SIGCSE Bull. 28 (1996), no. 3, 17–22.

Christopher Watson and Frederick W.B. Li, Failure rates in
introductory programming revisited, Proceedings of the 2014
Conference on Innovation and Technology in Computer
Science Education (New York, NY, USA), ITiCSE ’14, ACM,
2014, pp. 39–44.



Choice of Programming Language

Very high level languages: Scheme, Haskel, Python, ...

I Programming is cleaner, easier.
But also see [AVE+18] for a contrary view

I Too abstract: hard to relate to “what really happens in the
computer”

I Hard to convincingly say: “A[i] can be accessed in constant
time independent of i”

Low level languages: C

I Students can understand more easily “what really happens in
the computer”

I Programming is harder: too much pointer manipulation

I Code replication needed: generic coding not possible



Choice of Programming Language

Very high level languages: Scheme, Haskel, Python, ...

I Programming is cleaner, easier.
But also see [AVE+18] for a contrary view

I Too abstract: hard to relate to “what really happens in the
computer”

I Hard to convincingly say: “A[i] can be accessed in constant
time independent of i”

Low level languages: C

I Students can understand more easily “what really happens in
the computer”

I Programming is harder: too much pointer manipulation

I Code replication needed: generic coding not possible



Choice of Programming Language

Very high level languages: Scheme, Haskel, Python, ...

I Programming is cleaner, easier.

But also see [AVE+18] for a contrary view

I Too abstract: hard to relate to “what really happens in the
computer”

I Hard to convincingly say: “A[i] can be accessed in constant
time independent of i”

Low level languages: C

I Students can understand more easily “what really happens in
the computer”

I Programming is harder: too much pointer manipulation

I Code replication needed: generic coding not possible



Choice of Programming Language

Very high level languages: Scheme, Haskel, Python, ...

I Programming is cleaner, easier.
But also see [AVE+18] for a contrary view

I Too abstract: hard to relate to “what really happens in the
computer”

I Hard to convincingly say: “A[i] can be accessed in constant
time independent of i”

Low level languages: C

I Students can understand more easily “what really happens in
the computer”

I Programming is harder: too much pointer manipulation

I Code replication needed: generic coding not possible



Choice of Programming Language

Very high level languages: Scheme, Haskel, Python, ...

I Programming is cleaner, easier.
But also see [AVE+18] for a contrary view

I Too abstract: hard to relate to “what really happens in the
computer”

I Hard to convincingly say: “A[i] can be accessed in constant
time independent of i”

Low level languages: C

I Students can understand more easily “what really happens in
the computer”

I Programming is harder: too much pointer manipulation

I Code replication needed: generic coding not possible



Choice of Programming Language

Very high level languages: Scheme, Haskel, Python, ...

I Programming is cleaner, easier.
But also see [AVE+18] for a contrary view

I Too abstract: hard to relate to “what really happens in the
computer”

I Hard to convincingly say: “A[i] can be accessed in constant
time independent of i”

Low level languages: C

I Students can understand more easily “what really happens in
the computer”

I Programming is harder: too much pointer manipulation

I Code replication needed: generic coding not possible



Choice of Programming Language

Very high level languages: Scheme, Haskel, Python, ...

I Programming is cleaner, easier.
But also see [AVE+18] for a contrary view

I Too abstract: hard to relate to “what really happens in the
computer”

I Hard to convincingly say: “A[i] can be accessed in constant
time independent of i”

Low level languages: C

I Students can understand more easily “what really happens in
the computer”

I Programming is harder: too much pointer manipulation

I Code replication needed: generic coding not possible



Choice of Programming Language

Very high level languages: Scheme, Haskel, Python, ...

I Programming is cleaner, easier.
But also see [AVE+18] for a contrary view

I Too abstract: hard to relate to “what really happens in the
computer”

I Hard to convincingly say: “A[i] can be accessed in constant
time independent of i”

Low level languages: C

I Students can understand more easily “what really happens in
the computer”

I Programming is harder: too much pointer manipulation

I Code replication needed: generic coding not possible



Choice of Programming Language

Very high level languages: Scheme, Haskel, Python, ...

I Programming is cleaner, easier.
But also see [AVE+18] for a contrary view

I Too abstract: hard to relate to “what really happens in the
computer”

I Hard to convincingly say: “A[i] can be accessed in constant
time independent of i”

Low level languages: C

I Students can understand more easily “what really happens in
the computer”

I Programming is harder: too much pointer manipulation

I Code replication needed: generic coding not possible



Choice of Programming Language

Very high level languages: Scheme, Haskel, Python, ...

I Programming is cleaner, easier.
But also see [AVE+18] for a contrary view

I Too abstract: hard to relate to “what really happens in the
computer”

I Hard to convincingly say: “A[i] can be accessed in constant
time independent of i”

Low level languages: C

I Students can understand more easily “what really happens in
the computer”

I Programming is harder: too much pointer manipulation

I Code replication needed: generic coding not possible



Our choice: C++

I Start with sane C subset
Omit outdated features e.g. i+++++j; x++ += y++;

I Teach address arithmetic, memory management
Help understanding what happens in a computer, efficiency

I Teach string, vector classes which enable high level
programming.

I Key point: At once low level and high level.
I Students should be aware of pointers/memory management

but should use standard library classes which hide these.
I Also other template classes e.g. map, queue.

I Much safer and convenient than C, even without OOP.

I Growth possibility: features such as lambda expressions..



Our choice: C++

I Start with sane C subset

Omit outdated features e.g. i+++++j; x++ += y++;

I Teach address arithmetic, memory management
Help understanding what happens in a computer, efficiency

I Teach string, vector classes which enable high level
programming.

I Key point: At once low level and high level.
I Students should be aware of pointers/memory management

but should use standard library classes which hide these.
I Also other template classes e.g. map, queue.

I Much safer and convenient than C, even without OOP.

I Growth possibility: features such as lambda expressions..



Our choice: C++

I Start with sane C subset
Omit outdated features e.g. i+++++j; x++ += y++;

I Teach address arithmetic, memory management
Help understanding what happens in a computer, efficiency

I Teach string, vector classes which enable high level
programming.

I Key point: At once low level and high level.
I Students should be aware of pointers/memory management

but should use standard library classes which hide these.
I Also other template classes e.g. map, queue.

I Much safer and convenient than C, even without OOP.

I Growth possibility: features such as lambda expressions..



Our choice: C++

I Start with sane C subset
Omit outdated features e.g. i+++++j; x++ += y++;

I Teach address arithmetic, memory management

Help understanding what happens in a computer, efficiency

I Teach string, vector classes which enable high level
programming.

I Key point: At once low level and high level.
I Students should be aware of pointers/memory management

but should use standard library classes which hide these.
I Also other template classes e.g. map, queue.

I Much safer and convenient than C, even without OOP.

I Growth possibility: features such as lambda expressions..



Our choice: C++

I Start with sane C subset
Omit outdated features e.g. i+++++j; x++ += y++;

I Teach address arithmetic, memory management
Help understanding what happens in a computer, efficiency

I Teach string, vector classes which enable high level
programming.

I Key point: At once low level and high level.
I Students should be aware of pointers/memory management

but should use standard library classes which hide these.
I Also other template classes e.g. map, queue.

I Much safer and convenient than C, even without OOP.

I Growth possibility: features such as lambda expressions..



Our choice: C++

I Start with sane C subset
Omit outdated features e.g. i+++++j; x++ += y++;

I Teach address arithmetic, memory management
Help understanding what happens in a computer, efficiency

I Teach string, vector classes which enable high level
programming.

I Key point: At once low level and high level.
I Students should be aware of pointers/memory management

but should use standard library classes which hide these.
I Also other template classes e.g. map, queue.

I Much safer and convenient than C, even without OOP.

I Growth possibility: features such as lambda expressions..



Our choice: C++

I Start with sane C subset
Omit outdated features e.g. i+++++j; x++ += y++;

I Teach address arithmetic, memory management
Help understanding what happens in a computer, efficiency

I Teach string, vector classes which enable high level
programming.

I Key point: At once low level and high level.

I Students should be aware of pointers/memory management
but should use standard library classes which hide these.

I Also other template classes e.g. map, queue.

I Much safer and convenient than C, even without OOP.

I Growth possibility: features such as lambda expressions..



Our choice: C++

I Start with sane C subset
Omit outdated features e.g. i+++++j; x++ += y++;

I Teach address arithmetic, memory management
Help understanding what happens in a computer, efficiency

I Teach string, vector classes which enable high level
programming.

I Key point: At once low level and high level.
I Students should be aware of pointers/memory management

but should use standard library classes which hide these.

I Also other template classes e.g. map, queue.

I Much safer and convenient than C, even without OOP.

I Growth possibility: features such as lambda expressions..



Our choice: C++

I Start with sane C subset
Omit outdated features e.g. i+++++j; x++ += y++;

I Teach address arithmetic, memory management
Help understanding what happens in a computer, efficiency

I Teach string, vector classes which enable high level
programming.

I Key point: At once low level and high level.
I Students should be aware of pointers/memory management

but should use standard library classes which hide these.
I Also other template classes e.g. map, queue.

I Much safer and convenient than C, even without OOP.

I Growth possibility: features such as lambda expressions..



Our choice: C++

I Start with sane C subset
Omit outdated features e.g. i+++++j; x++ += y++;

I Teach address arithmetic, memory management
Help understanding what happens in a computer, efficiency

I Teach string, vector classes which enable high level
programming.

I Key point: At once low level and high level.
I Students should be aware of pointers/memory management

but should use standard library classes which hide these.
I Also other template classes e.g. map, queue.

I Much safer and convenient than C, even without OOP.

I Growth possibility: features such as lambda expressions..



Our choice: C++

I Start with sane C subset
Omit outdated features e.g. i+++++j; x++ += y++;

I Teach address arithmetic, memory management
Help understanding what happens in a computer, efficiency

I Teach string, vector classes which enable high level
programming.

I Key point: At once low level and high level.
I Students should be aware of pointers/memory management

but should use standard library classes which hide these.
I Also other template classes e.g. map, queue.

I Much safer and convenient than C, even without OOP.

I Growth possibility: features such as lambda expressions..


